

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN APPLICATION FOR NORMAL AND CRITICAL
OPERATIONS IN A TACTICAL MLS SYSTEM

by

Yeow Cheng Ng

December 2010

 Thesis Co-Advisors: Cynthia E. Irvine
 Mark Gondree

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB no. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
An Application for Normal and Critical Operations in a Tactical MLS
System

5. FUNDING NUMBERS

6. AUTHOR(S) Yeow Cheng Ng

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The ability for first responders to access sensitive and critical information during an emergency can help save lives
and reduce damage. There may be information normally unavailable to first responders that could help during a crisis.
The Transient Tactical Access to Sensitive Information (T-TASI) system is intended to employ an emergency access
control policy and be a scalable security solution for transient trust. Built on a least privilege separation kernel
(LPSK), the T-TASI system allows a coordinating authority to provide temporary, controlled access to sensitive
information to authorized first responders, during emergencies. The current T-TASI system prototype, however, lacks
applications demonstrating this capability. This work has developed a T-TASI system application. Through analysis,
three necessary software subsystems were identified: a memory management system, a file storage system and an
application-level library providing interfaces compliant with the standard C library. We describe the design,
implementation, and testing of the application and the three supporting components, all of which will facilitate future
application development for the T-TASI system.
14. SUBJECT TERMS
TCX, LPSK, Partition, Emergency, Transient Trust, T-TASI, File System, Memory Management, C
Library

15. NUMBER OF
PAGES

181

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

AN APPLICATION FOR NORMAL AND CRITICAL OPERATIONS IN A
TACTICAL MLS SYSTEM

Yeow Cheng Ng
Civilian, Defence Science & Technology Agency, Singapore

B.Sci., National University of Singapore, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Yeow Cheng Ng

Approved by: Cynthia E. Irvine
Thesis Co-Advisor

Mark Gondree
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The ability for first responders to access sensitive and critical information during an

emergency can help save lives and reduce damage. There may be information normally

unavailable to first responders that could help during a crisis. The Transient Tactical

Access to Sensitive Information (T-TASI) system is intended to employ an emergency

access control policy and be a scalable security solution for transient trust. Built on a least

privilege separation kernel (LPSK), the T-TASI system allows a coordinating authority to

provide temporary, controlled access to sensitive information to authorized first

responders, during emergencies. The current T-TASI system prototype, however, lacks

applications demonstrating this capability. This work has developed a T-TASI system

application. Through analysis, three necessary software subsystems were identified: a

memory management system, a file storage system and an application-level library

providing interfaces compliant with the standard C library. We describe the design,

implementation, and testing of the application and the three supporting components, all of

which will facilitate future application development for the T-TASI system.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE OF STUDY ..1
C. THESIS ORGANIZATION ..2

II. BACKGROUND ..3
A. LEAST PRIVILEGE SEPARATION KERNEL (LPSK)3
B. TRUSTED COMPUTING EXEMPLAR (TCX) PROJECT5
C. TRANSIENT TACTICAL ACCESS TO SENSITIVE

INFORMATION (T-TASI) PROJECT ...6
D. T-TASI SYSTEM ...6
E. SUMMARY ..8

III. OBJECTIVES AND HIGH LEVEL ANALYSIS ...9
A. OBJECTIVES ..9
B. SCENARIO (CONCEPT OF OPERATIONS) ...10
C. APPLICATION SELECTION AND REQUIREMENTS10
D. SUMMARY ..16

IV. DESIGN AND IMPLEMENTATION ...17
A. HIGH LEVEL DESIGN ..17
B. T-TASI APPLICATION-LEVEL MEMORY MANAGEMENT

DESIGN ..19
1. Interfaces ..20
2. Dependencies ..21

C. T-TASI APPLICATION-LEVEL MEMORY MANAGEMENT
IMPLEMENTATION ...22
1. Initialization..22
2. Memory Allocation ..23
3. Memory Deallocation...24

D. T-TASI RAM DISK FILE SYSTEM DESIGN ...24
1. Interfaces ..24
2. Dependencies ..25

E. T-TASI RAM DISK FILE SYSTEM IMPLEMENTATION26
1. Initialization..27
2. FatFs ..27
3. File System Layer ...28
4. Disk I/O Layer ..29
5. Handling Invalid Parameters..29

F. T-TASI C LIBRARY DESIGN...29
1. Interfaces ..30
2. Dependencies ..40

G. T-TASI C LIBRARY IMPLEMENTATION ..41

viii

1. File Functions ...41
2. Memory Functions ...42
3. Console Functions ..43
4. Signal and Process Functions ..43
5. Handling Invalid Parameters..49

H. SUMMARY ..49

V. TESTING ..51
A. TESTING APPROACH ..51
B. TESTING LIMITATIONS ...51
C. T-TASI C LIBRARY TEST PLAN ..52
D. T-TASI APPLICATION-LEVEL MEMORY MANAGEMENT TEST

PLAN ...104
E. T-TASI RAM DISK FILE SYSTEM TEST PLAN105
F. ED APPLICATION TESTING ..111
G. INTEGRATION TESTING ..111
H. SUMMARY ..114

VI. RESULTS ...115
A. PROBLEMS ENCOUNTERED ...115

1. Large Memory Array Initialization ...115
2. Interface Name Conflicts ...115
3. Identifier for Memory Segment Declaration117
4. User Credentials in Non TPA Partition ...117

B. RELATED WORK ..118
C. FUTURE WORK ...118

1. T-TASI C Library ..118
2. T-TASI RAM Disk File System ..120
3. T-TASI Application-Level Memory Management120

D. CONCLUSION ..121

APPENDIX A. DESIGN OVERVIEW OF FATFS ..123
A. FATFS RETURN CODES ..123
B. FATFS FILE MODES ...125
C. FATFS FIL STRUCTURE..125
D. FATFS INTERFACES ..126

1. f_open ..126
2. f_read ..127
3. f_write ...128
4. f_close ..128
5. f_unlink ...129
6. f_mkdir..129
7. f_rename ...129
8. f_lseek ..130

APPENDIX B. INSTALLATION GUIDE ...131
A. SYSTEM REQUIREMENTS ...131

ix

B. SYSTEM INSTALLATION ...132

APPENDIX C. TESTING PROCEDURES ...135
A. TEST PROCEDURES FOR TEST CASE 1–163135
B. TEST PROCEDURES FOR TEST CASE 164 ...136
C. TEST PROCEDURES FOR TEST CASE 165–169138

APPENDIX D. DEMONSTRATION PROCEDURES ...143
A. PREPARATION ..143
B. SCENARIO: ACCESSING NORMAL PARTITION IN NORMAL

MODE ...144
C. SCENARIO: ACCESSING EAP IN EMERGENCY MODE145
D. SCENARIO: ACCESSING NORMAL PARTITION IN

EMERGENCY MODE ..145

APPENDIX E. SOFTWARE ARTIFACTS ..147
A. ED APPLICATION ...147
B. T-TASI C LIBRARY ...148
C. T-TASI RAM DISK FILE SYSTEM ...148
D. MODIFICATION OF ORIGINAL T-TASI SYSTEM SOURCE

CODE ..149

APPENDIX F. BASIC ED COMMANDS ...151

LIST OF REFERENCES ..155

INITIAL DISTRIBUTION LIST ...159

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Components of the T-TASI System ...7
Figure 2. Dependency Relationships Among ed and Our Three Main Software

Components ...18
Figure 3. T-TASI Application-Level Memory Management Relationships22
Figure 4. T-TASI RAM Disk File System Relationships ...26
Figure 5. FatFs Software Architecture ..27
Figure 6. T-TASI C Library Relationships ...40
Figure 7. Setup for Integration Test ..112

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Potential Text Editor Applications...12
Table 2. Function Dependencies of ed Application ...13
Table 3. T-TASI Application-Level Memory Management Interfaces20
Table 4. T-TASI RAM Disk File System Interfaces ...25
Table 5. FatFs FIL Structure and C Library File Structure ..28
Table 6. Disk I/O Functions in FatFs ...29
Table 7. T-TASI C Library Interfaces ...31
Table 8. External Dependencies of T-TASI C Library ..40
Table 9. Mapping between the C Library Functions and the File System Functions42
Table 10. T-TASI C Library Stubbed Functions and Their Effects on the ed

Application ...44
Table 11. T-TASI C Library Test Cases ..53
Table 12. T-TASI Application-Level Memory Management Test Cases104
Table 13. T-TASI RAM Disk File System Test Cases ..106
Table 14. ed Application Test Case ...111
Table 15. Integration Test Cases ..113
Table 16. Symbol Conflicts Between the T-TASI System Application I/O Library

Interfaces and Standard C Library Interfaces ..116
Table 17. C Interfaces and the Corresponding Required System Functionalities119
Table 18. FatFs Function Return Codes...123
Table 19. FatFs File Open Modes ..125
Table 20. FatFs FIL Structure ..126
Table 21. Files Used to Build the ed Text Editor on the T-TASI System147
Table 22. Files Used to Build the T-TASI C Library ..148
Table 23. Files Used to Build the T-TASI RAM Disk File System149
Table 24. T-TASI System Files that were Modified ..149
Table 25. Basic ed Commands ...151

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

CC Common Criteria

DSEG Data Segment

EAL Evaluation Assurance Level

EAP Extraordinary Access Partition

FAT File Allocation Table

LDT Local Descriptor Table

LPSK Least Privilege Separation Kernel

MLS Multi-Level Secure

MMU Memory Management Unit

MSEG Memory Segment

PL Privilege Level

RAM Random Access Memory

SAK Secure Attention Key

SKPP Separation Kernel Protection Profile

T-TASI Transient Tactical Access to Sensitive Information

TCB Trusted Computing Base

TCX Trusted Computing Exemplar

TPA Trusted Path Application

TSL Trusted Services Layer

VM Virtual Machine

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have made this thesis

possible. My deepest gratitude to both my thesis advisors, Professor Cynthia Irvine and

Dr. Mark Gondree, for their patience and guidance through the course of this thesis. I

would like to take the opportunity to thank David Shifflett and Paul Clark who spent their

time and shared their knowledge to help me complete my thesis.

I would also like to thank my Singapore sponsor, the Defence Science &

Technology Agency (DSTA), for giving me the opportunity to pursue my postgraduate

studies, as well as the professors and lecturers at NPS who have taught me, and from

whom I have learned a lot.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION

The ability for first responders to access sensitive and critical information during

an emergency can help save lives and reduce damages. This may be information normally

unavailable to first responders that could help during a crisis, due either to a lack of

appropriate vetting in advance or to a lack of “need-to-know.” The Transient Tactical

Access to Sensitive Information (T-TASI) system is intended to employ an emergency

access control policy and be a scalable security system to grant extraordinary access to

sensitive information. The T-TASI system allows some coordinating authority to provide

temporary, controlled access to sensitive information to authorized first responders,

during emergencies. The T-TASI system design is based on a least privilege separation

kernel (LPSK) that provides the security policy enforcement underlying the ability to

allow extraordinary access with transient trust. The current T-TASI system prototype,

however, lacks applications demonstrating its capabilities. The motivation of this thesis is

to develop applications that will better showcase the transient trust property, and to

design an application development framework that will facilitate future development for

the T-TASI system.

B. PURPOSE OF STUDY

The T-TASI system currently has a very limited set of applications demonstrating

its capabilities. One objective of this research is to develop applications that will

showcase the ability of the LPSK to support policy-controlled transient trust. The

notional scenario for these transient-trust capabilities is that of providing first responders

with temporary access to sensitive data during an emergency or other exceptional

situation (which is otherwise unavailable during normal operations, under traditional

MLS policies). Another objective of this research is to provide a set of common libraries

to help reduce the development and maintenance effort for future T-TASI System

application development.

2

C. THESIS ORGANIZATION

Chapter I introduces the motivation and purpose for our work. Chapter II provides

background information on concepts integral to understanding our development setting

and the designs we propose, including separation kernels, the LPSK, the TCX project,

and the T-TASI system. Chapter III describes the objectives of our project and provides a

high-level analysis of our project requirements. Out of this analysis, three main software

components are identified to support our project: a memory management system, a file

storage system and an application-level library providing interfaces compliant with the

standard C library. Chapter IV documents the design and implementation of each of these

three main components: the T-TASI Application-Level Memory Management system, the

T-TASI RAM Disk File System, and the T-TASI C Library. Chapter V details the

functional and exception testing performed to verify to correctness of each component.

Chapter VI concludes with a discussion of problems encountered, an overview of some

related work and suggestions for future work.

3

II. BACKGROUND

The overall objective of this research is to develop applications that can illustrate

how a secure, tactical device incorporating a separation kernel can be used for

extraordinary access. Before exploring the details of our work, we provide background

information to give the reader the context of our research. In particular, this chapter

serves to provide the reader with a basic understanding of separation kernel technology,

the Least Privilege Separation Kernel (LPSK) of the Trusted Computing Exemplar

(TCX) project, the current LPSK prototype, transient trust and a scenario using transient

trust.

A. LEAST PRIVILEGE SEPARATION KERNEL (LPSK)

A kernel is the central part of an operating system responsible for managing

resources such as memory, the processor and the devices associated with the computer.

When a single computer system provides information storage and computation services

to a group of applications that perhaps are associated with different users there is often a

requirement to control access of these applications and users to the information contained

in the system. A security kernel is the minimal, protected core of the operating system

that implements the reference monitor abstraction [1]. The correct operation of the

security kernel is sufficient to guarantee the trusted computing base (TCB) satisfies the

reference monitor’s security properties, including mediated access, verifiable

enforcement, and tamper-proof operation [1]. This security kernel is the least common

mechanism [2] necessary to implement the security policy and usually includes

mechanisms for information sharing, inter-process communication, and physical resource

multiplexing. Given an architecture based upon the use of TCB subsets [3], it is possible

to verify that the security policy allocated to the security kernel is implemented correctly

independent of other elements of the TCB.

MITRE developed the first prototype security kernel, as a government-sponsored

project to prove the concept [4]. Since then, a number of proprietary operating systems

4

have been developed using designs based on the security kernel concept. The first

commercially available operating systems incorporating security kernels were

Honeywell’s Secure Communication Processor (SCOMP [5]) and the Gemini Secure

Operating System (GEMSOS [6]). SCOMP and GEMSOS use different approaches in

their implementation. SCOMP is implemented on custom hardware optimized for

security while GEMSOS is implemented on existing commercial Intel x86 hardware.

Rusby argued that distributed systems offer a natural basis for the design of

secure computer systems. He proposed a new type of security kernel, known as a

separation kernel, that is able to create the same secure environment provided by a

physically distributed system in a single shared machine [7]. A separation kernel

performs its role by first allocating all resources to partitions—the semantics of which

may represent different policy equivalence classes—and, second, by controlling all

interactions between the partitions. A subject in one partition cannot communicate to or

influence a subject in another partition, unless it is allowed by the security policy [8].

A least privilege [2] separation kernel is a class of separation kernel that, in

addition to enforcing the relationships between the policy equivalence classes, applies the

security design principle of least privilege to the interaction between subjects and

resources managed by the kernel [9]. This is done through the enforcement of both

partition-to-partition and subject-to-resource policies. Partition-to-partition policy

determines the coarse interaction of all active entities in one partition with the resources

in another partition, whereas the subject-to-resource policy further restricts the

interaction of subjects with resources in another partition on a subject-by-subject basis.

A privilege level (PL) policy, applicable within processes and between processes,

constrains a subject’s access to resources based on the privilege level of both the subject

and the resource. The PL policy allows subjects with higher privilege (i.e., numerically

lower hardware PL number) to access resources of less privilege (i.e., numerically higher

PL number).

One resource available in an LPSK system is a segment. A segment is a block of

memory to which subjects potentially have read and write access. There are three types of

5

segments available in the LPSK: default segments, memory segments (mseg) and data

segments (dseg). A default segment refers to the code, data and stack segments of an

executable resource. A mseg is an Intel x86 data segment that is created and exported by

the LPSK to a process’ address. A dseg is an Intel x86 data segment that is created by the

LPSK from a secondary storage segment in a process’ address space [10].

A configuration vector is the configuration data that is parsed by the LPSK

Initializer to establish both the initial secure state and the behavior of the Run-Time

LPSK during an operational mode. The LPSK Configuration Tool is an off-line software

tool that is used to convert a human-readable configuration vector into a binary

configuration vector, and vice versa. This tool is used to specify the behavior of the

LPSK and the applications executing in the partition [10].

B. TRUSTED COMPUTING EXEMPLAR (TCX) PROJECT

The Information Assurance Directorate of the United States Government

published “The U.S. Government Protection Profile for Separation Kernels in

Environments Requiring High Robustness” that defines the Separation Kernel Protection

Profile (SKPP). This document provides the requirements for a high assurance separation

kernel [11].

One aspect of the Trusted Computing Exemplar (TCX) project at the Naval

Postgraduate School is to develop an openly-distributed separation kernel that provides

high assurance for applications such as simple embedded systems [12]. The objectives of

the project are to create a reusable high assurance development framework, develop a

reference implementation of trusted components, support the evaluation of these

reference components at the Common Criteria [13] evaluation level EAL7 and provide

open dissemination of the previous three activities. The Least Privilege Separation Kernel

(LPSK) developed by the TCX project is intended to be compliant with the SKPP.

6

C. TRANSIENT TACTICAL ACCESS TO SENSITIVE INFORMATION
(T-TASI) PROJECT

The Transient Tactical Access to Sensitive Information (T-TASI) project is

related to the TCX project. The T-TASI project introduces the concept of emergency

access [12] in the context of a small tactical device (E-device) that hosts the LPSK and

related trusted and untrusted services. First-responders (e.g., police, medical personnel,

fire safety personnel) require information that, if made available, could assist them to

better handle an emergency situation. Examples of such information include those

relevant to physical security—such as infrastructure blueprints—or those relevant to

private medical information. In general, if this information is made widely available in

advance of any “need to know,” it may lead to damage. Transient trust is the idea of

providing access to information, in temporary violation of some alternative normal mode

policy (i.e., extraordinary access), so that users can securely accomplish some immediate

and necessary task [14]. Transient trust is extended to the user during an emergency,

allowing users access to sensitive emergency information in accordance with some

(permissive) emergency mode policy.

During normal-mode operations, the user of the E-device has no access to

sensitive information. This sensitive information resides in the Extraordinary Access

Partition (EAP) of the E-device, which may be updated in the field. The EAP is

scheduled during normal mode operations but only has keyboard and screen focus (i.e.,

can be accessed by the user) during an emergency. In addition, the user is only able to

enter the EAP during an emergency after proper identification and authorization via the

Trusted Path Application (TPA).

D. T-TASI SYSTEM

The prototype system developed in the T-TASI project is known as the T-TASI

System. The current prototype system consists of the LPSK kernel, Trusted Services

Layer (TSL), Trusted or Untrusted Operating System Services, Trusted Path Application

(TPA), partitions (e.g., EAP and normal partitions) and various applications (see Figure

1). The system prototype currently supports multiple partitions on an E-device, with one

7

process per partition. A variety of input and output devices are either virtualized and

multiplexed to the partitions by the LPSK, or are focused on a particular partition as a

result of user interaction or some system event [10].

Figure 1. Components of the T-TASI System

The architecture of the T-TASI is summarized in Figure 1. The various

architectural components, and their associated hardware protection level, are described

next; the interested reader is referred to Irvine et al. [15] for details.

(PL0) The LPSK executes in PL0 and is designed to meet the security

requirements of the SKPP. It provides resource partitioning and management, mandatory

access control policy enforcement, process/partition scheduling, cross-partition and inter-

process communication and Secure Attention Key (SAK) detection [16].

(PL1) The Trusted Services Layer (TSL) executes in PL1 and provides

Multilevel Security (MLS) support and interpretation, resource virtualization, object

management, focus management, trusted channel management, internet routing and inter-

partition networking and emergency management.

(PL2) The Trusted and Untrusted Operating System Services execute at PL2 and

provide application management, user management and operating system services.

8

(PL3) Three types of partitions are exported by the LPSK: TPA Partition

(Trusted Partition), Normal Partition, and EAP. Normal partitions are used to support

regular data processing activities of a user. The TPA partition provides a high assurance

execution environment for high integrity applications such as the TPA. The EAP contains

sensitive data that the user is not authorized to see under normal conditions and that is

only available during certain emergencies. An Application I/O Library provides console

input and output services at PL3 for applications, and provides some interfaces for

formatting console output.

To demonstrate the current capabilities of the system, three applications have

been developed: the TPA, the box application and the clock application. The box

application demonstrates the console input and output capabilities of the T-TASI system

by rendering random graphical boxes on the E-device screen. The clock demonstrates the

timer and scheduling functions of the T-TASI system. The TPA provides a trusted path

application: a trusted communications path between the user and the system for initial

authentication. The TPA also provides the user with an interface to change partitions, as

permitted by the user’s session level and access rights. There is no existing application

(in the EAP) to demonstrate extraordinary access to information during emergencies.

Provision of an EAP application will be the focus of the work to be discussed in the

chapters that follow.

E. SUMMARY

This chapter provided the background of Separation Kernel technology, the Least

Privilege Separation Kernel (LPSK) of the Trusted Computing Exemplar (TCX) project,

the T-TASI system and transient trust. It also introduced a scenario using transient trust.

The next chapter describes the objectives and a high-level analysis of the requirements.

9

III. OBJECTIVES AND HIGH LEVEL ANALYSIS

This chapter is separated into four sections. The objectives of this research are

described first, followed by a description of the concept of operations for a text editor in a

scenario requiring emergency access of sensitive data. The third section provides an

analysis of requirements for the text editor application.

A. OBJECTIVES

The T-TASI system currently has a very primitive set of applications

demonstrating the capabilities of the LPSK. Applications for the existing T-TASI system

are: a trusted path application, a clock application and a box rendering application used

for terminal display functionality demonstrations. One objective of the research described

here is to develop applications that will showcase the LPSK capabilities, such as the

ability to support policy-controlled transient trust [15]. The notional scenario for these

transient-trust capabilities is that of providing first-responders with temporary access to

sensitive data, otherwise unavailable during normal operations under traditional MLS

policies, during an emergency or other exceptional situation.

Utility functions, such as memory management, file I/O access and string

manipulation, are traditionally provided for development by standard C library interfaces.

These interfaces, however, are not available in the current T-TASI system prototype. As

argued by Guillen [17], in the absence of a standard C library, development becomes

expensive and support for these commonly used functions will likely be repeated and

implemented on an application-by-application basis. Alternatively, using a common

library reduces development and maintenance effort and is better aligned with the

principle of least common mechanism [2]. This motivates a secondary objective of this

research: to provide a framework for easier development of future applications for the T-

TASI system.

10

B. SCENARIO (CONCEPT OF OPERATIONS)

During normal mode operation, a user (i.e., a potential first-responder) of the

prototype-TASI system has no access to sensitive information. During normal mode

operation, users can freely create and access information in a normal partition. Sensitive

information, however, resides in the extraordinary access partition (EAP) of the E-

device, which is not accessible to users during normal mode operation. The EAP is

scheduled during normal mode operation; however, it is permitted to have keyboard and

screen focus (activated) only during an emergency. When the network message indicating

the start of an emergency arrives, the E-device transitions to emergency mode. At this

point, screen and keyboard focus will change to the TPA partition and the TPA will

display a message informing the user that the EAP may be accessed. The user

authenticates through the TPA and selects to transfer focus to the EAP to interact with the

emergency application. When the emergency is over—as before, signaled by a network

message—the EAP is no longer accessible and the system will transition back to normal

mode.

A text editor application allows the user to read sensitive information in the EAP

that is pertinent to handling the emergency. The text editor application also allows the

user to update information or store new data in the EAP. The information written to the

EAP can be synchronized over the network with a main authority at a later time.

Sensitive information can created in advance and stored in the EAP for use during an

emergency. During emergency mode operation, a user can access sensitive information in

the EAP but, due to the LPSK partition configuration policy, the user will not able to

copy this information to normal partitions or to a remote site using the network. This

policy prevents the leakage of sensitive information during or after the emergency period.

C. APPLICATION SELECTION AND REQUIREMENTS

A framework will be created to allow an open source text editor to be ported to

the T-TASI system. Compared to application development “from scratch,” porting

applications eliminates redevelopment of similar functionality and shortens the

11

development time. Other capabilities (i.e., applications) can be implemented on the T-

TASI system by using this porting framework.

There are many open source text editor applications that are suited for this

research work, such as GNU Emacs and other command line editors, various graphical

editors and general text manipulation utilities. Table 1 shows a list of text editor

applications that were originally considered and their external dependencies. Many of

these applications depend on external libraries, such as the libc (standard C library), libm

(math library), pthread (multithreading) and ncurses (textual user interface) libraries;

however, these libraries are not available in the current T-TASI system prototype. In

addition, it is not straightforward to implement many of these libraries, as they

themselves require features of the LPSK and the Trusted Services Layer that are not yet

available. Thus, a phased prototyping approach, as followed in the LPSK and TSL

development, is also followed in our project.

12

Table 1. Potential Text Editor Applications

no. Application Description Requirements /

Dependencies

1. GNU Emacs [18] An extensible and customizable

display editor

• ncurses

• pthread

• libm

• libc

2. Vim [19] A general purpose, text-based editor • ncurses

• pthread

• libm

• libc

3. ed [20] A simple line editor • libc

The GNU project’s open source text editor ed [20] was selected as our text editor

application because it appeared particularly simple to port and had less dependencies

compared to other applications. The current ed project (version 1.4) has dependencies on

functions in the standard C library. To support porting of this existing code to the T-TASI

system, these missing functions have to be implemented in a customized C library for the

T-TASI system. Table 2 provides a list of functions that ed requires from the standard C

library; the name for each function is presented in the second column, the third column

shows the usage classification (whether the interface is used for process handling, signal

handling, file management, memory management, console interfaces or straightforward

utility routines) of the interface and the fourth column provides a brief description of the

interface.

13

Table 2. Function Dependencies of ed Application

no. Function Name Usage Description

1. setjmp Process Save the current application environment for

longjmp

2. longjmp Process Restores the application environment set by

setjmp

3. exit Process Terminate the existing application

4. getenv Process Get the application environment of a given

value

5. isatty Process Test whether a given device is a terminal

6. pathconf Process Get the path name configuration and limits

7. pclose Process Close a pipe stream

8. popen Process Open a pipe stream

9. setvbuf Process Assign buffering to a stream

10. system Process Issue an external command from the

application

11. setlocale Process Set the application specific locale

12. ioctl Process Control a stream device

13. sigaddset Signal Add a signal to a signal set

14. sigemptyset Signal Remove a signal from a signal set

15. sigaction Signal Specify an action to be associated with a

given signal

16. sigprocmask Signal Change a blocked signal

17. fclose File Close an opened file

14

no. Function Name Usage Description

18. fopen File Open a file with a given file name

19. fflush File Flush unwritten data in the output buffer to

the file

20. fputc File Write a character to the file

21. fread File Read a block of data from an opened file

22. fseek File Reposition the file stream pointer

23. ftell File Get the current file stream pointer

24. fwrite File Write a block of data to an opened file

25. stderr File Standard error file descriptor

26. stdin File Standard input file descriptor

27. stdout File Standard output file descriptor

28. strerror File Get an error message string

29. tmpfile File Create a temporary file

30. malloc Memory Allocate a block of memory

31. free Memory Free an allocated block of memory

32. realloc Memory Reallocate the size of a previously allocated

memory block

33. regcomp Utility Compile a given regular expression

34. regerror Utility Provide a mapping of regular expression

error codes to printable string

35. regexec Utility Compare a given string with the regular

expression

15

no. Function Name Usage Description

36. regfree Utility Free any memory used by regcomp

37. strtol Utility Convert a string to a long integer

38. memchr Utility Find a byte in a block of memory

39. memcpy Utility Copy a block of memory from one location

to another

40. strchr Utility Find a character in a given string

41. strlen Utility Find the length of a given string

42. strncmp Utility Compare parts of two given string

43. strncpy Utility Copy part of a string

44. scanf Console Get a character from the console input

45. printf Console Output formatted string to the display

46. puts Console Output a string to the display

For any text editor application to execute (i.e., to open, read, write and save a

file), the T-TASI system will need to provide some type of file storage system. This file

storage system must be able to support file management functions such as file open, file

read and file write. As the current platform supports multiple partitions with different

privilege levels, this file system must also be able to support multiple instances in

different partitions so as not to mix sensitive and non-sensitive information in the same

file storage system. No such file system is currently available for the T-TASI system.

The malloc and free functions (see Table 2) are used for memory management in

the ed application. External memory is available to an application running in a partition,

and is provided through the use of memory segments exported by the LPSK to the

partition. A memory management system needs to be implemented to support between

these C library memory functions using the memory segments exported by the LPSK.

16

D. SUMMARY

This chapter motivates this work by introducing a scenario describing the use of a

text editor during an emergency. The larger objectives of this work and a high level

analysis of the requirements for our application were provided. The ed text editor was

chosen as the application for this project. This analysis resulted in some preliminary

rationale for developing a customized C library, a file storage system, and application-

level memory management support for the T-TASI system. The next chapter will

continue with the design and implementation of these components.

17

IV. DESIGN AND IMPLEMENTATION

This chapter is separated into eight sections: first, we present a high level design

of the system, then we provide a description of the design and implementation for each of

the three main components of our development framework (the T-TASI Application-

Level Memory Management, the T-TASI RAM Disk File System and the T-TASI C

Library); we conclude with a summary of this chapter.

A. HIGH LEVEL DESIGN

The design of the system is intended to satisfy the objectives of our project and

the requirements for the ed application. We previously identified three main components

(see Chapter III, Section C) that are required to support an application like ed on the T-

TASI system:

1. A C library to provide a standard interface to common utility functions.

2. A memory management component to provide an interface between the C

library memory functions and the memory segments exported by the

LPSK to the partition. This memory management will support the

dynamic allocation and de-allocation of memory of the application when it

is running.

3. A file system to provide storage to allow application data to persist.

Figure 2 shows a high-level design and how these components interrelate to

support the ed application.

18

Figure 2. Dependency Relationships Among ed and Our Three Main Software
Components

In most standard C library implementations, memory allocation and de-allocation

functions invoke a kernel service that provides the memory operation. Memory allocation

in the T-TASI system is static, with memory segments exported by the LPSK to the

partitions during system initialization. A memory management system, the T-TASI

Application-Level Memory Management component, is introduced to manage the use of

the exported memory segments on behalf of applications such as those relying on the T-

TASI C Library. Specifically, this memory manager will allocate memory blocks from

the exported memory segments to requesting applications when the malloc function in the

T-TASI C Library is invoked. The design of the T-TASI Application-Level Memory

Management is described in Section B and its implementation is described in Section C.

A file system is introduced to provide an application-friendly storage capability in

the T-TASI system. This file system, the T-TASI RAM Disk File System, will provide

storage capability to applications in the partitions. Applications will access file input and

output functions through T-TASI C Library interfaces such as fopen and fread. The T-

TASI C Library will act as an abstraction layer, providing interfaces for applications

19

requiring file input and output functionality. This allows the file system to be developed

and improved independently without affecting the applications. The design of the T-TASI

RAM Disk File System is described in Section D and its implementation is described in

Section E.

The T-TASI C Library will provide a basic C library for applications in the T-

TASI system for I/O operations, memory handling and string manipulation. A common C

library will reduce the complexity of future applications for the T-TASI system because

developers will no longer need to implement the same functionality separately, for each

application. The net effect of a common library is less development time and fewer

programming errors. This approach is also aligned with the principle of least common

mechanism in secure system design principles [21]. The design of the T-TASI C Library

is described in Section F and its implementation is described in Section G.

B. T-TASI APPLICATION-LEVEL MEMORY MANAGEMENT DESIGN

Memory management is required to support the dynamic allocation and de-

allocation of memory at the application level. The LPSK prototype exports memory

segments to a particular partition using the configuration vector. In particular, the

configuration vector describes the amount of memory and the allowed access modes

(read, write or both) to that memory, for each partition. Once the memory allocation is

defined in the configuration vector, it cannot be changed by either the kernel or

applications. From a memory management perspective, this may result in unnecessary

wastage of memory, i.e., an application may only require some memory for a short period

of time.

The T-TASI Application-Level Memory Management module is intended to

manage the memory segment allocated to a partition by the configuration vector. The

memory management module will allocate portions of a memory segment to an

application at its request, and free the allocated memory when the application no longer

20

requires it. This memory segment used by the memory management subsystem will be

shared with multiple applications in the same partition. (Note that at present T-TASI

system supports only one application per partition.)

1. Interfaces

T-TASI Application-Level Memory Management component will provide two

interfaces for memory allocation and deallocation as shown in Table 3. The interface

get_memory will be used for memory allocation request and free_memory will be used

for freeing up the allocated memory.

Table 3. T-TASI Application-Level Memory Management Interfaces

no. Function

Interface

Function Description

1. int get_memory(

unsigned int size,

void** ptr)

This function allocates memory to the application from the

internally managed memory segment.

Inputs:

size [IN] Specifies the number of bytes of the

requested memory allocation

ptr [OUT] A pointer to the memory block allocated

by the function. If the function fails to allocate the

requested memory, a null pointer is returned.

Function Result:

Function return 0 when successful and 1 if there is an

error.

21

no. Function

Interface

Function Description

2. int free_memory(

void* ptr)

This function frees the memory block previously allocated

from get_memory.

Inputs:

ptr [IN] Pointer to a memory block to be freed. This

memory block must be previously allocated with

get_memory.

Function Result:

Function return 0 when successful and 1 if there is an

error.

2. Dependencies

The T-TASI Application-Level Memory Management module is implemented in

PL3, at the same privilege level as the application. It depends on make_ptr, a Trusted OS

Service interface available in PL2, which is used to create a pointer to the memory

segment for its memory management. The relationships between each of these

components are illustrated in Figure 3.

22

Figure 3. T-TASI Application-Level Memory Management Relationships

C. T-TASI APPLICATION-LEVEL MEMORY MANAGEMENT
IMPLEMENTATION

1. Initialization

The offline LPSK Configuration Tool is used to configure the size of the memory

segment used by the T-TASI Application-Level Memory Management module. The

memory segment exported by the LPSK is initialized into a single memory array within

the memory module. Blocks of memory are dynamically allocated to applications from

this array, as memory requests are made. For each block of memory allocated for an

application’s use, the first five bytes are reserved for administrative (bookkeeping)

purposes, and we refer to these as the memory block’s an administrative block. The first

byte of the administrative block indicates if the memory block following it is considered

free (is equal to zero), or has been allocated to some applications for use (is equal to one).

The next four bytes indicate the size of the memory block following the administrative

23

block. Administrative blocks are fixed-size, so the sixth byte is always the beginning of

the memory block controlled by the administrative block.

When the get_memory is invoked for the first time, the T-TASI Application-Level

Memory Management module will perform its initialization. During initialization, the

entire internal memory array is interpreted as a single memory block. The first byte of its

administrative block is set to zero, indicating the memory block is free, and the next four

bytes are set to size of the memory block following the administrative block (i.e., the size

of the memory segment, less five bytes).

2. Memory Allocation

When the function get_memory is called, the memory manager scans the array for

an appropriately sized, free memory block according to a First-Fit allocation scheme. A

First-Fit allocation scheme allocates memory using the first free memory block that is at

least as large as the requested block. When a free memory block is found and the size of

the free memory block is precisely the requested size, then its administrative block is

modified to reflect that the block is no longer free, and get_memory returns success. If the

size of the requested memory block is smaller than the free block, the free block will be

split: the free block will be marked as allocated, but its length reduced to the requested

size; a new administrative block will be created after this, marking the remaining

unallocated memory as a new, free block. This first memory block will be passed to the

requesting application as allocated memory. If no free memory block accommodating the

allocation request is found, get_memory returns failure.

Bays’ results [22] suggest that a First-Fit allocation scheme, as we use, has better

or comparable performance to other simple allocation schemes, such as Next-Fit and

Best-Fit. First-Fit is also a fast algorithm because it spends as little time searching for

available memory as possible [23]. We have chosen a First-Fit allocation scheme, as it is

quite simple to implement compared to other allocation schemes.

24

3. Memory Deallocation

When the function free_memory is called, the address of the allocated memory is

passed as a parameter to the function. The first byte of the administrative block for this

memory block is this address minus five bytes. The first byte of the administrative block

will be set to free, i.e. unallocated, to indicate this memory block is no longer in use. On

each de-allocation, the freed memory block will, if possible, be merged with adjacent free

memory blocks. This helps to prevent fragmentation of available memory over long

periods of allocation and deallocation activity. When merging two adjacent free memory

blocks, the first administrative block’s length is expanded, causing the second memory

block and its administrative block to be recovered as available memory.

D. T-TASI RAM DISK FILE SYSTEM DESIGN

Currently, there is no secondary storage device driver available in the T-TASI

system. To support the demonstration scenario, a RAM disk storage device was

introduced. A RAM disk was selected because it does not depend on the availability of a

device driver for a secondary storage device. The RAM disk will allow applications to

create new files, as well as read and write existing files to a memory disk. Each partition

can be configured with any number of RAM disks. Specifically, the LPSK configuration

vector describes the number of RAM disks and the access modes (read, write or both) to

the disk, for each partition. A limitation of a RAM disk is that it is volatile and will not

persist across power cycles. However, it is suitable for a demonstration of file system

support for applications.

1. Interfaces

The T-TASI RAM Disk File System will provide the interfaces for file

manipulation listed in Table 4 (see Appendix A for the technical specification), which

satisfy the requirements for a file storage mechanism identified in Chapter III, Section C.

An application in a partition will access the RAM disk storage device via file

25

management interfaces made available by the T-TASI C Library. This allows the file

system to be developed and improved without affecting the applications’ design and

code.

Table 4. T-TASI RAM Disk File System Interfaces

no. T-TASI RAM Disk File System Description

1. f_open Open a file for read or write access

2. f_read Read data from an opened file

3. f_write Write data to an opened file

4. f_close Close an opened file

5. f_unlink Delete a file from the disk

6. f_mkdir Create a directory on the disk

7. f_rename Rename a file

2. Dependencies

The T-TASI RAM Disk File System module is implemented in PL2, at a higher

privilege level than the application. It depends on make_ptr, a Trusted OS Service

interface available in PL2, which is used to create a pointer to the memory segment for

the RAM disk. The relationships between each of these components are illustrated in

Figure 4.

26

Figure 4. T-TASI RAM Disk File System Relationships

E. T-TASI RAM DISK FILE SYSTEM IMPLEMENTATION

The implementation of the RAM disk file system utilizes the open source project

FatFs [25]. The FatFs project was chosen for porting to the T-TASI system because it has

a small code base written completely in ANSI C and does not depend on any external

libraries. FatFs is a generic File Allocation Table (FAT) file system, developed for small,

embedded systems. FatFs supports FAT12, FAT16 and FAT32 file systems. FatFs is free

software and is covered by a BSD-style license, which allows use and redistribution with

modification [26]. The FatFs license is less restrictive than the “two-clause BSD license,”

requiring no conditions on its redistribution in binary form. Like the two-clause BSD

license, it is a permissive license, which places no restrictions on the use or modification

of the source; in particular, unlike the GNU GPL, it places no restrictions on derived

works.

27

1. Initialization

Similar to the T-TASI Application-Level Memory Management component, the

offline LPSK Configuration Tool is used to configure the size of the memory segment for

the file system module. T-TASI RAM Disk File System module is initialized by the main

PL2 routine when the system starts up. During initialization, the memory segment

exported by the LPSK is formatted into a FAT16 file system within the file system

module.

2. FatFs

FatFs may be viewed as a module, separated into two layers: the file system layer

and the disk input/output layer. The file system layer provides application interfaces that

manipulate files or directories in a FAT file system. The disk input/output layer provides

low-level disk I/O interfaces to the actual storage media. Figure 5 shows the FatFs

software architecture (see Appendix A for a detailed interface description and design

summary for FatFs).

Figure 5. FatFs Software Architecture

28

3. File System Layer

The file system layer exports the interfaces in Table 4 from PL2 to PL3 via call

gates, allowing them to be used by the T-TASI C Library. In this layer, a FIL structure is

used to represent the internal state of a file. The FIL structure is different from the FILE

structure defined by the ISO C standard. The mapping of this FIL structure to the ISO C

FILE structure is maintained in the T-TASI C Library, allowing applications to continue

to use the standard C FILE structure. Table 5 shows the comparison of FatFs’ FIL

structure and a standard C FILE structure (see Table 20 for details).

Table 5. FatFs FIL Structure and C Library File Structure

FatFs FIL Structure C Library FILE Structure

typedef struct {

FATFS* fs;

WORD id;

BYTE flag;

BYTE pad1;

DWORD fptr;

DWORD fsize;

DWORD org_clust;

DWORD curr_clust;

DWORD dsect;

DWORD dir_sect;

BYTE* dir_ptr;

BYTE buf[512];

} FIL;

typedef struct {

unsigned char* _ptr;

int _cnt;

unsigned _flag;

int _handle;

unsigned _bufsize;

unsigned short _ungotten;

} FILE;

29

4. Disk I/O Layer

The disk input/output functions in the FatFs module’s low-level disk I/O layer,

shown in Table 6, were modified to work with an exported memory segment instead of

with secondary storage media. This allowed FatFs to be extended, naturally, to serve as a

RAM disk file system for the T-TASI system. The disk I/O layer accesses the secondary

memory (in this case, a memory segment) in terms of sectors [17], each of size 512 bytes.

The memory segment used for the file system is divided into blocks of 512 bytes to

facilitate this addressing.

Table 6. Disk I/O Functions in FatFs

no. Interface Description

1. disk_initialize Initialize the disk for use.

2. disk_read Read a block of data from the disk.

3. disk_write Write a block of data to the disk.

5. Handling Invalid Parameters

There are minimal safety checks in the FatFs module and thus, when illegal

parameters or null pointers are passed to its interfaces, the current system halts due to a

memory violation error. The code was not modified to be more robust because of time

constraints; however, these problems are somewhat mitigated through range validation

and other parameter checking performed by the T-TASI C Library.

F. T-TASI C LIBRARY DESIGN

The set of functions included in the initial library design are motivated by our

application requirements (see Table 2). When future applications require additional

library functions, the library will need to be expanded. ISO C99 standard [24] is the

ANSI standard for the C language specification. This specification was used to guide the

30

design and development of the T-TASI C Library. In particular, all T-TASI C Library

interfaces and behaviors will adhere to this standard.

1. Interfaces

The T-TASI C Library will provide the interfaces listed in Table 7, which satisfies

the requirements to support ed (see Chapter III, Section C). Several other interfaces were

implemented in the T-TASI C library even though they are not required by the ed

application. These functions were implemented because they will be useful for future

application development. For example, the function scanf is implemented because it is a

more general function than getc and can be used to implement getc, which is required by

ed.

Each function listed in Table 7 is implemented according to the ISO C99 standard

[24]. For each row, the second column provides the C library function interface, the third

column gives a brief description of the interface's behavior, and the final column

references the relevant section of the ISO C99 standard [24] providing the interface's

specification.

31

Table 7. T-TASI C Library Interfaces

no. T-TASI C Library

Interface

Function Description Specification

1. int isspace (int c) Tests for any character that is a standard white-space character. [24] §7.4.1.10

2. int isxdigit (int c) Tests for any hexadecimal-digit character. [24] §7.4.1.12

3. int isdigit (int c) Tests for any decimal-digit character. [24] §7.4.1.5

4. int isalpha (int c) Tests for any character for which isupper or islower is true. [24] §7.4.1.2

5. int isalnum (int c) Tests for any character for which isalpha or isdigit is true. [24] §7.4.1.1

6. int islower (int c) Tests for any character that is a lowercase letter. [24] §7.4.1.7

7. int isupper (int c) Tests for any character that is an uppercase letter. [24] §7.4.1.11

8. int tolower (int c) Converts an uppercase letter to a corresponding lowercase letter. [24] §7.4.2.1

9. int atoi (const char* p) Convert the initial portion of the string pointed to by p to an integer representation. [24] §7.20.1.2

32

no. T-TASI C Library

Interface

Function Description Specification

10. long int strtol

(const char* str,

char** endp,

int base)

Converts the initial portion of the string pointed to by str to long integer

representation.

[24] §7.20.1.4

11. unsigned long int

strtoul

(const char* str,

char** endp,

int base)

Converts the initial portion of the string pointed to by str to unsigned long int

representation

[24] §7.20.1.4

12. char* strcpy

(char* dest,

char* src)

Copies the string pointed to by src into the array pointed to by dest. [24] §7.21.2.3

33

no. T-TASI C Library

Interface

Function Description Specification

13. char* strncpy

(char* dest,

const char* src,

unsigned int s)

Copies no more than s characters from the array pointed to by src to the array

pointed to by dest.

[24] §7.21.2.4

14. int strcmp

(char* str1,

char* str2)

Returns an integer greater than, equal to, or less than 0, if the string pointed to by

str1 is greater than, equal to, or less than the string pointed to by str2.

[24] §7.21.4.2

15. int strncmp

(char* str1,

char* str2,

unsigned int s)

Returns an integer greater than, equal to, or less than 0, if the (possibly null-

terminated) string pointed to by str1is greater than, equal to, or less than the

(possibly null-terminated) string pointed to by str2.

[24] §7.21.4.4

16. char* strchr

(char* str, int c)

Locates the first occurrence of c in the string pointed to by str. [24] §7.21.5.2

34

no. T-TASI C Library

Interface

Function Description Specification

17. unsigned int strlen

(char* str)

Computes the length of the null-terminated string pointed to by str. [24] §7.21.6.3

18. void* malloc

(unsigned int s)

Allocates memory space for an object whose size is specified by s.

[24] §7.20.3.3

19. void free(void* p) Causes the space pointed to by p to be de-allocated, and made available for further

allocation.

[24] §7.20.3.2

20. void* calloc

(unsigned int n,

unsigned int s)

Allocates space for an array of n objects, each of whose size is s bytes. The

allocated space is initialized to zero.

[24] §7.20.3.1

21. void* realloc

(void* p,

unsigned int s)

De-allocates the old object pointed to by p and returns a pointer to a new object

that has the size specified by s. The contents of the new object shall be the same as

that of the old object prior to de-allocation, up to the lesser of the new and old

sizes.

[24] §7.20.3.4

35

no. T-TASI C Library

Interface

Function Description Specification

22. void* memcpy

(void* dest,

const void* src,

unsigned int s)

Copies s bytes from the object pointed to by src into the object pointed to by dest. [24] §7.21.2.1

23. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

Compares the first s bytes of the object pointed to by ptr1 to the first s bytes of the

object pointed to by ptr2.

[24] §7.21.4.1

24. void* memmove

(void* dest,

const void* src,

unsigned int s)

Copies s bytes from the object pointed to by src into the object pointed to by dest.

Copying takes place as if the s bytes from the object pointed to by src are first

copied into a temporary array of s bytes that does not overlap the objects pointed

to by src and dest, and then the s bytes from the temporary array are copied into

the object pointed to by dest.

[24] §7.21.2.2

36

no. T-TASI C Library

Interface

Function Description Specification

25. void* memset

(void* ptr,

int v,

unsigned int s)

Copies the value of v into each of the first s bytes of the object pointed to by ptr. [24] §7.21.6.1

26. FILE* fopen

(const char* fn,

const char* m)

Opens the file whose name is the string pointed to by fn and associates a stream

with it.

[24] §7.19.5.3

27. unsigned int fread

(void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

Reads up to c elements from the stream pointed to by f, and writes them into the

array pointed to by ptr, where each element is of sizes bytes.

[24] §7.19.8.1

37

no. T-TASI C Library

Interface

Function Description Specification

28. unsigned int fwrite

(const void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

Reads up to c elements from the array pointed to by ptr, and writes to the stream

pointed to by f, where each element if of size s bytes.

[24] §7.19.8.2

29. int fseek

(FILE* f,

long int off,

int origin)

Sets the file position indicator for the stream pointed to by f. [24] §7.19.9.2

30. int fclose(FILE* f) Causes the stream pointed to by f to be flushed and the associated file to be closed. [24] §7.19.5.1

31. long int ftell(FILE* f) Obtains the current value of the file position indicator for the stream pointed to by

f.

[24] §7.19.9.4

38

no. T-TASI C Library

Interface

Function Description Specification

32. int fputs

(const char* s,

FILE* f)

Writes the string pointed to by s to the stream pointed to by f. [24] §7.19.7.4

33. int fputc

(int c,

FILE* f)

Writes the character specified by c to the output stream pointed to by f. [24] §7.19.7.3

34. int fgetc(FILE* f) Obtains the next byte (interpreted as an unsigned char converted to an integer)

from the stream pointed to by f, and advances the associated file position indicator

for the stream.

[24] §7.19.7.1

35. int printf

(const char* format,

…)

Writes output to STDOUT, under control of the string pointed to by format that

specifies how subsequent arguments are converted for output.

[24] §7.19.6.3

39

no. T-TASI C Library

Interface

Function Description Specification

36. int sprintf

(char* b,

const char* format,

…)

Writes output to the array pointed to by b, under control of the string pointed to by

format that specifies how subsequent arguments are converted for output.

[24] §7.19.6.6

37. int scanf

(const char* format,

…)

Reads input from STDIN, under control of the string pointed to by format that

specifies the admissible input sequences and how they are to be converted for

assignment, using subsequent arguments as pointers to the objects to receive the

converted input.

[24] §7.19.6.4

40

2. Dependencies

The T-TASI C library is implemented in PL3 in the T-TASI system; hence, when

a function in the library is invoked by an application during runtime, routines in the

library will be executed in application process space. Input and output functions such as

file or screen manipulation in the library will involve kernel services. Thus, the use of

kernel services is abstracted by the library. Figure 6 shows the dependencies of the T-

TASI C library on components at each privilege level. The memory management

interfaces rely on the T-TASI Application-Level Memory Management module, and the

file management interfaces rely on the T-TASI RAM Disk File System. The Application

I/O Library already exists as part of the T-TASI system prototype.

Figure 6. T-TASI C Library Relationships

The specific functions in each of the major services required by the T-TASI C

Library are shown in Table 8.

Table 8. External Dependencies of T-TASI C Library

41

no. PL Type of Service Required Function Interfaces

1. PL3 Console tsm_io_getchar, tsm_io_gets, tsm_io_printf

(Application I/O Library interfaces)

2. PL3 Memory

Management

get_memory, free_memory

(T-TASI Application-Level Memory Management

interfaces)

3. PL2 File

Management

f_open, f_read, f_write, f_lseek, f_mount, f_unlink,

f_mkdir, f_rename

(T-TASI RAM Disk File System interfaces)

G. T-TASI C LIBRARY IMPLEMENTATION

During the development of the T-TASI C Library, open source projects such as

the GNU C Library [27], diet libc [28], uClibc [29] and the FreeBSD C Library [30] were

inspected to understand how other C libraries are implemented. The source code for

regular expression parsing is taken directly from the FreeBSD project and incorporated

into the T-TASI C Library. FreeBSD is covered by the permissive, two-clause BSD

License [31], which allows the use, modification and redistribution of binary and source.

The functions required by the ed application are classified as utility, file, memory,

console, process, and signal as shown in Table 2. Utility functions have no dependency

on other components and are straightforward routines implemented directly in the T-

TASI C Library. The following sub-sections describe how the other functions are

implemented.

1. File Functions

Applications manipulate files in the file system through functions provided by the

T-TASI C Library. These interfaces, in turn, invoke the relevant PL2 functions exported

42

by the T-TASI RAM Disk File System. Table 9 provides the mapping of the T-TASI C

library file functions to the PL2 interfaces for T-TASI RAM Disk File System functions.

Table 9. Mapping between the C Library Functions and the File System Functions

no. T-TASI C Library File Function

(PL3)

T-TASI RAM Disk File System

Functions (PL2)

1. fopen f_open

2. fclose f_close

3. fread f_read

4. fgetc f_read

5. fwrite f_write

6. fputs f_write

7. fputc f_write

8. fseek f_lseek

2. Memory Functions

Applications access memory services through those T-TASI C Library interfaces

related to memory. The T-TASI C Library memory functions malloc and free are

supported by the T-TASI Application-Level Memory Management interfaces,

get_memory and free_memory respectively. When an application invokes malloc (or

free), the interface get_memory (or free_memory) in the T-TASI Application-Level

Memory Management module will be invoked.

43

3. Console Functions

The T-TASI C Library console functions scanf, printf, and puts are supported by

the T-TASI Application I/O Library. Specifically, the input function, scanf, is supported

by tsm_io_getchar and the output functions printf and puts are supported by

tsm_io_printf.

4. Signal and Process Functions

Due to the characteristics and limitations of the current T-TASI system prototype,

not all of the functions required to support ed have be implemented. Those functions that

cannot be implemented have been replaced with empty stub functions or, to prevent

errors during the linking process, have been implemented by functions that simply return

a default value. Signal and process functions dealing with pipes, signals, jump and the

shell environment have been stubbed in this fashion. Table 10 shows the list of functions

required by ed that are not implemented in the T-TASI C Library. Through testing, it has

been determined that most functionality of ed has not been affected by these

implementation decisions. The rationale for postponing the implementation of each

function and the effects of their new behavior are summarized in Table 10. For each row,

the second column provides the interface for the unsupported function, the third column

provides a brief description of the interface's behavior, the fourth column describes the

type of function implementing the interface, the fifth column provides the rationale for

not implementing the standard function behavior, and the final column describes the

behavior of the replacement function.

44

Table 10. T-TASI C Library Stubbed Functions and Their Effects on the ed Application

no. C Library

Interface

Interface

Description

Replaced by Reasons Behavior of implemented

function

1. setjmp Save the current

application

environment for

longjmp

Empty stub function Requires modifying

registers such as ESP and

EIP, which is currently

not allowed by the kernel.

The capability of ed to

gracefully shutdown when the

system generates a hang up

signal is disabled.

2. longjmp Restores the

application

environment set

by setjmp

Empty stub function Requires modifying

registers such as ESP and

EIP, which is currently

not allowed by the kernel.

The capability of ed to

gracefully shutdown when the

system generates a hang up

signal is disabled.

3. exit Terminate the

existing

application

Empty stub function In the current T-TASI

system prototype, an

application in a partition

cannot be terminated.

ed will stay resident in the

partition.

45

no. C Library

Interface

Interface

Description

Replaced by Reasons Behavior of implemented

function

4. getenv Get the

application

environment of a

given value

Return an empty string to the

application.

No implementation of an

application environment is

available in the current T-

TASI system prototype.

Used to locate the home

directory of the user in order to

save opened file when the

system generates a hang up

signal.

5. isatty Test whether a

given device is a

terminal

Always return true. Not a standard C library

function.

The capability of ed to

gracefully shutdown when the

system generates a hang up

signal is disabled.

6. pathconf Get the path

name

configuration and

limits

Always return 256. No implementation of an

application environment is

available in the current T-

TASI system prototype.

The size of path name is hard-

coded to 256 when this

function is invoked. 256 bytes

is the maximum path of the

implemented file system.

46

no. C Library

Interface

Interface

Description

Replaced by Reasons Behavior of implemented

function

7. pclose Close a pipe

stream

Empty stub function No implementation of

pipes is available in the

current T-TASI system

prototype.

No data can be piped to the ed

application from a shell.

8. popen Open a pipe

stream

Empty stub function No implementation of

pipes is available in the

current T-TASI system

prototype.

No data can be piped to the ed

application from a shell.

9. setvbuf Assign buffering

to a stream

Always return success Used by the ed application

to avoid contention when

using pipes.

No data can be piped to the ed

application from a shell.

10. sigaddset Add a signal to a

signal set

Function invocation is

commented out

Used by the ed application

to register and handle

hang up signals from the

system.

The capability of ed to

gracefully shutdown when the

system generates a hang up

signal is disabled.
11. sigemptyset Remove a signal

from a signal set

Function invocation is

commented out

47

no. C Library

Interface

Interface

Description

Replaced by Reasons Behavior of implemented

function

12. sigaction Specify an action

to be associated

with a given

signal

Function invocation is

commented out

13. sigprocmask Change a blocked

signal

Function invocation is

commented out

14. ioctl Control a stream

device

Empty stub function Not a standard C library

function.

The capability of ed to

gracefully shutdown when the

system generates a hang up

signal is disabled.

15. system Issue an external

command from

the application

Empty stub function No implementation of

environment of a shell in a

partition in the current T-

TASI system prototype.

The ed application cannot

issue and execute commands

to a shell.

48

no. C Library

Interface

Interface

Description

Replaced by Reasons Behavior of implemented

function

16. setlocale Set the

application

specific locale

Empty stub function No implementation of

locale in the current T-

TASI system prototype.

A default international

environment is used by ed

application.

49

5. Handling Invalid Parameters

For most of the functions in the standard C library that have pointer inputs, their

behaviors on null inputs are unspecified. For most UNIX systems, when a null pointer is

passed as a parameter to a function, a segmentation fault occurs when the function

dereferences that pointer. In response, the kernel generates a signal to the process

notifying it of the memory violation. By default, the process dumps its working memory

to a file and terminates. In the current T-TASI system prototype, when a process has a

memory access violation, an interrupt will be generated (interrupt number 13) and the

system will halt. We note that this is merely the behavior of the current prototype and, in

the future, the T-TASI system will terminate the offending process and the system will

not halt. Additional safety checks for null pointers are implemented for these functions in

the current T-TASI C Library. Specifically, when a null pointer would cause a

segmentation fault, additional checks will return a failure code back to the application

instead of referencing the pointer, thereby preventing the system from halting.

In the case of invalid or bad pointers, no additional checks are provided. The

current T-TASI system will halt when an invalid or bad pointer is encountered in these

functions. Additional checks are not implemented because at the PL3 level the library is

not able to discern whether a particular memory access is permissible or not.

H. SUMMARY

This chapter presented the design of the three main software libraries used to port

ed to run on the T-TASI system, and a description of how each is implemented. These

three software libraries were developed utilizing a combination of newly developed and

pre-existing modules. In particular, the FatFs project was used to implement the T-TASI

RAM Disk File System, and code for regular parsing from FreeBSD was used to

implement some interfaces of the T-TASI C Library. The next chapter describes test

plans and testing results for each software component.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

V. TESTING

This chapter describes the test design and the outcome of testing for the

components developed in this project. A description of how to perform each set of tests is

provided in Appendix C.

A. TESTING APPROACH

This section describes the tests designed for the software artifacts of this project.

Tests are separated into two major types. First, component tests are those designed to

verify each component’s compliance with its specification. Integration tests, in which all

components are combined and tested together, provide evidence of the functional

correctness of the whole system.

The components to be tested are:

1. T-TASI C Library

2. T-TASI Application-Level Memory Management

3. T-TASI RAM Disk File System

4. ed Application

The component tests have been implemented to run as automated unit tests. A unit

testing methodology provides evidence that the source code is working correctly by

dividing the source into its smallest testable parts (or units). Each test is classified as

either a Functional (F) or Exception (E) test. Functional tests are designed to verify the

interface’s correctness on valid inputs and exception tests are designed for negative cases

and behavior on invalid inputs.

B. TESTING LIMITATIONS

Function behavior outside the interface’s specification are, for the most part, not

tested. For example, for most functions, the function's behavior when manipulating a bad

pointer is unspecified. For the T-TASI system, the general behavior is known—an

52

interrupt is generated when the application tries to access memory that does not belong to

its partition—but verifying this behavior is not part of the interface test plan. As any

behavior would satisfy this underspecified condition, such a test is always, trivially,

passed. As another example, for the strcpy interface, when the size of the destination

buffer is smaller than the source being copied, this will result in a memory overflow with

unpredictable effects. If the memory overflows to the application stack memory,

corruption of application memory occurs. If the memory overflows to a memory region

not belonging to the partition, then the CPU will generate an interrupt.

Boundary testing, which is part of exception testing, for memory limits is not

conducted for all tests due to the memory constraints of the development machine, which

is only equipped with 4 gigabytes of memory. In particular, to test the memcpy interface

using the largest possible value for the buffer size parameter requires a system with at

least 8 gigabytes of memory for its source and destination buffers. In general, when the

behavior of a function on certain inputs is unspecified or the ultimate effects of the

function on those inputs are variable, these exception tests are not part of the interface

test plans.

C. T-TASI C LIBRARY TEST PLAN

The objectives of the following tests are to verify that the implementation of the

T-TASI C Library interfaces conform to their specification.

Table 11 provides a summary of the test cases conducted for the T-TASI C

Library. Each row provides a description of the test case performed: the first column

refers to the test case number, the second column refers to the T-TASI C library interface

tested, the third column refers to the type of test conducted, the fourth column provides a

description of the parameters used in test, the fifth column gives the expected test result,

and the final column provides the action result of the test. Subsequent tables in this

chapter use the same column headings and have the same meaning as described here.

53

Table 11. T-TASI C Library Test Cases

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

1. int isspace (int c) F Parameter c is a space Return 1 Passed

2. int isspace (int c) F Parameter c is value ‘a’, i.e., not a space Return 0 Passed

3. int isxdigit (int c) F Parameter c is a hexadecimal digit, 0x0a Return 1 Passed

4. int isxdigit (int c) F Parameter c is not a hexadecimal digit, ‘k’ Return 0 Passed

5. int isdigit (int c) F Parameter c is a digit, 7 Return 1 Passed

6. int isdigit (int c) F Parameter c is not a digit, ‘a’ Return 0 Passed

7. int isalpha (int c) F Parameter c is a letter, ‘a’ Return 1 Passed

8. int isalpha (int c) F Parameter c is not a letter, 7 Return 0 Passed

9. int isalnum (int c) F Parameter c is a letter, ‘a’ Return 1 Passed

54

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

10. int isalnum (int c) F Parameter c is a digit, 7 Return 1 Passed

11. int isalnum (int c) F Parameter c is a space, ‘ ’ Return 0 Passed

12. int islower (int c) F Parameter c is a lower case letter, ‘a’ Return 1 Passed

13. int islower (int c) F Parameter c is an upper case letter, ‘A’ Return 0 Passed

14. int islower (int c) E Parameter c is not a letter, ‘?’ Return 0 Passed

15. int isupper (int c) F Parameter c is an upper case letter, ‘A’ Return 1 Passed

16. int isupper (int c) F Parameter c is a lower case letter, ‘a’ Return 0 Passed

17. int isupper (int c) E Parameter c is not a letter, ‘?’ Return 0 Passed

18. int tolower (int c) F Parameter c is an upper case letter, ‘A’ Return 97, ASCII

value of character

‘a’

Passed

55

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

19. int tolower (int c) E Parameter c is a lower case letter, ‘b’ Return 98, ASCII

value of character

‘b’

Passed

20. int tolower (int c) E Parameter c is a digit character, ‘7’ Return 55, ASCII

value of character

‘7’

Passed

21. int atoi (const char* p) F Parameter p is a pointer to a string value,

“12345”

Return integer

value 12345

Passed

22. int atoi (const char* p) F Parameter p is a pointer to a string value, “-0” Return integer

value 0

Passed

23. int atoi (const char* p) F Parameter p is a pointer to a string value,

“2147483647”

Return integer

value 2147483647

Passed

56

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

24. int atoi (const char* p) F Parameter p is a pointer to a string value,

“-2147483648”

Return integer

value

-2147483648

Passed

25. int atoi (const char* p) E Parameter p is a pointer to a string value,

“aabbcc”

Return 0 Passed

26. int atoi (const char* p) E Parameter p is a pointer to a string value,

“9999999999”

Return

2147483647

(maximum integer

value)

Passed

57

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

27. int atoi (const char* p) E Parameter p is a pointer to a string value,

“-9999999999”

Return

-2147483648

(minimum integer

value)

Passed

28. int atoi (const char* p) E Parameter p is a null pointer Return 0 Passed

29. long int strtol

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“12345”, parameter endp is a character pointer,

parameter base is 10

Return 12345 Passed

58

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

30. long int strtol

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“12345”, parameter endp is a character pointer,

parameter base is 16

Return 74565

(12345 interpreted

in base 16)

Passed

31. long int strtol

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“12345”, parameter endp is a character pointer,

parameter base is 8

Return 5349

(12345 interpreted

in base 8)

Passed

59

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

32. long int strtol

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“2000000000”, parameter endp is a character

pointer, parameter base is 10

Return

2000000000

Passed

33. long int strtol

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a string value

“2000000000”, parameter endp is a character

pointer, parameter base is 16

Return

2147483647

(maximum long

value)

Passed

60

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

34. long int strtol

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“2000000000”, parameter endp is a character

pointer, parameter base is 8

Return 268435456

(2000000000

interpreted in base

8)

Passed

35. long int strtol

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a null pointer,

parameter endp is a character pointer, parameter

base is 10

Return 0 Passed

61

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

36. long int strtol

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a string value

“9999999999”, parameter endp is a character

pointer, parameter base is 10

Return

2147483647

(maximum long

value)

Passed

37. long int strtol

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a string value “-

9999999999”, parameter endp is a character

pointer, parameter base is 10

Return

 -2147483648

(minimum long

value)

Passed

62

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

38. unsigned long int strtoul

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“12345”, parameter endp is a character pointer,

parameter base is 10

Return 12345 Passed

39. unsigned long int strtoul

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“12345”, parameter endp is a character pointer,

parameter base is 16

Return 74565

(12345 interpreted

in base 16)

Passed

63

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

40. unsigned long int strtoul

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“12345”, parameter endp is a character pointer,

parameter base is 8

Return 5349

(12345 interpreted

in base 8)

Passed

41. unsigned long int strtoul

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value “0”,

parameter endp is a character pointer, parameter

base is 10

Return 0 Passed

64

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

42. unsigned long int strtoul

(const char* str,

char** endp,

int base)

F Parameter str is a pointer to a string value

“4294967295”, parameter endp is a character

pointer, parameter base is 10

Return

4294967295

Passed

43. unsigned long int strtoul

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a null pointer,

parameter endp is a character pointer, parameter

base is 10

Return 0 Passed

65

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

44. unsigned long int strtoul

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a string value

“9999999999”, parameter endp is a character

pointer, parameter base is 10

Return

4294967295

(maximum value)

Passed

45. unsigned long int strtoul

(const char* str,

char** endp,

int base)

E Parameter str is a pointer to a string value

“-9999999999”, parameter endp is a character

pointer, parameter base is 10

Return

4294967295

(maximum value)

Passed

66

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

46. char* strcpy

(char* dest,

char* src)

F Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a pointer

to the string value of “Hello World”

Return pointer to

“Hello World”,

this pointer is the

same as dest

Passed

47. char* strcpy

(char* dest,

char* src)

F Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a pointer

to the string value of “Hello”

Return pointer to

“Hello”, this

pointer is the same

as dest

Passed

48. char* strcpy

(char* dest,

char* src)

E Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a null

pointer.

Return null value Passed

67

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

49. char* strcpy

(char* dest,

char* src)

E Parameter dest is a null pointer. Parameter src is

a pointer to the string value of “Hello World”

Return null value Passed

50. char* strcpy

(char* dest,

char* src)

E Parameter dest is a null pointer. Parameter src is

a null pointer

Return null value Passed

51. char* strncpy

(char* dest,

const char* src,

unsigned int s)

F Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a pointer

to the string value of “Hello World”. Parameter s

is of value 12

Return pointer to

“Hello World”,

this pointer is the

same as dest

Passed

68

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

52. char* strncpy

(char* dest,

const char* src,

unsigned int s)

F Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a pointer

to the string value of “Hello World”. Parameter s

is of value 11

Return pointer to

“Hello World”,

this pointer is the

same as dest

Passed

53. char* strncpy

(char* dest,

const char* src,

unsigned int s)

F Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a pointer

to the string value of “Hello World”. Parameter s

is of value 4

Return pointer to

“Hell”, this pointer

is the same as dest

Passed

69

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

54. char* strncpy

(char* dest,

const char* src,

unsigned int s)

E Parameter dest is a character array of size 12

initialized to value 0. Parameter src is a null

pointer. Parameter s is of value 12

Return null value Passed

55. char* strncpy

(char* dest,

const char* src,

unsigned int s)

E Parameter dest is a null pointer. Parameter src is

a pointer to the string value of “Hello World”.

Parameter s is of value 12

Return null value Passed

70

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

56. char* strncpy

(char* dest,

const char* src,

unsigned int s)

E Parameter dest is a null pointer. Parameter src is

a null pointer. Parameter s is of value 12

Return null value Passed

57. int strcmp

(char* str1,

char* str2)

F Parameter str1 is a string value of “Hello”.

Parameter str2 is a string value of “Hello”

Return 0 Passed

58. int strcmp

(char* str1,

char* str2)

F Parameter str1 is a string value of “Hello”.

Parameter str2 is a string value of “World”

Return -15 (the

numeric difference

of ‘H’ and ‘W’)

Passed

71

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

59. int strcmp

(char* str1,

char* str2)

F Parameter str1 is a string value of “World”.

Parameter str2 is a string value of “Hello”

Return 15 (the

numeric difference

of ‘W’ and ‘H’)

Passed

60. int strcmp

(char* str1,

char* str2)

E Parameter str1 is a string value of “Hello”.

Parameter str2 is a null pointer

Return -1

(parameter cannot

be null)

Passed

61. int strcmp

(char* str1,

char* str2)

E Parameter str1 is a null pointer. Parameter str2 is

a string value of “World”. Parameter str2 is a

null pointer

Return -1

(parameter cannot

be null)

Passed

72

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

62. int strcmp

(char* str1,

char* str2)

E Parameter str1 is a null pointer. Parameter str2 is

a null pointer

Return -1

(parameter cannot

be null)

Passed

63. int strncmp

(char* str1,

char* str2,

unsigned int s)

F Parameter str1 is a string value of “Hello”.

Parameter str2 is a string value of “Hello”.

Parameter s is of value 5

Return 0 Passed

73

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

64. int strncmp

(char* str1,

char* str2,

unsigned int s)

F Parameter str1 is a string value of “Hello”.

Parameter str2 is a string value of “Hella”.

Parameter s is of value 5

Return 14 (the

numeric difference

of ‘o’ and ‘a’)

Passed

65. int strncmp

(char* str1,

char* str2,

unsigned int s)

F Parameter str1 is a string value of “Hella”.

Parameter str2 is a string value of “Hello”.

Parameter s is of value 5

Return -14 (the

numeric difference

of ‘a’ and ‘o’)

Passed

74

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

66. int strncmp

(char* str1,

char* str2,

unsigned int s)

E Parameter str1 is a string value of “Hello”.

Parameter str2 is a null pointer”. Parameter s is

of value 5

Return -1

(parameter cannot

be null)

Passed

67. int strncmp

(char* str1,

char* str2,

unsigned int s)

E Parameter str1 is a null pointer. Parameter str2 is

a string value of “Hello”. Parameter str2 is a null

pointer. Parameter s is of value 5

Return -1

(parameter cannot

be null)

Passed

75

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

68. int strncmp

(char* str1,

char* str2,

unsigned int s)

E Parameter str1 is a null pointer. Parameter str2 is

a null pointer. Parameter s is of value 5

Return -1 Passed

69. char* strchr

(char* str, int c)

F Parameter str is a string value of “Hello World”.

Parameter c is a letter “e”

Return the string

value of “ello”, the

pointer returned is

the position of the

letter ‘e’ in the

original str

Passed

70. char* strchr

(char* str, int c)

F Parameter str is a string value of “Hello World”.

Parameter c is a letter ‘K’.

Return null value

(‘K’ not found in

str)

Passed

76

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

71. char* strchr

(char* str, int c)

E Parameter str is a null pointer. Parameter c is

letter ‘W’.

Return null value Passed

72. unsigned int strlen

(char* str)

F Parameter str is a string value of “Hello” Return 5 Passed

73. unsigned int strlen

(char* str)

E Parameter str is a null pointer Return 0 Passed

74. void* malloc

(unsigned int s)

F Parameter s is of value 1024 Return a pointer to

a memory region

of size 1024

Passed

75. void* malloc

(unsigned int s)

E Parameter s is of value 0 Return null value Passed

77

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

76. void free(void* p) F Parameter p is a pointer previously malloc with

1024 bytes

No return value Passed

77. void free(void* p) E Parameter p is a null pointer No return value Passed

78. void* calloc

(unsigned int n,

unsigned int s)

F Parameter n is a digit of value 10. Parameter s is

a digit of value 10

Return a pointer to

a memory region

of size 100 (10 x

10). The memory

region is initialized

to value 0.

Passed

79. void* calloc

(unsigned int n,

unsigned int s)

E Parameter n is a digit of value 0. Parameter s is a

digit of value 10

Return null value Passed

78

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

80. void* calloc

(unsigned int n,

unsigned int s)

E Parameter n is a digit of value 10. Parameter s is

a digit of value 0

Return null value Passed

81. void* calloc

(unsigned int n,

unsigned int s)

E Parameter n is a digit of value 0. Parameter s is a

digit of value 0

Return null value Passed

82. void* realloc

(void* p,

unsigned int s)

F Parameter p is a null pointer. Parameter s is a

digit of value 1024

Return a pointer to

a memory region

of size 1024

Passed

79

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

83. void* realloc

(void* p,

unsigned int s)

F Parameter p is a pointer to a previously malloced

memory region of size 1024. Parameter s is a

digit of value 2048

Return a pointer to

a memory region

of size 2048

Passed

84. void* realloc

(void* p,

unsigned int s)

F Parameter p is a pointer to a previously malloced

memory region of size 1024. Parameter s is a

digit of value 0

Return a null value Passed

85. void* realloc

(void* p,

unsigned int s)

F Parameter p is a pointer to a previously malloced

memory region of size 1024. Parameter s is a

digit of value 512

Return a pointer to

a memory region

of size 512

Passed

80

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

86. void* realloc

(void* p,

unsigned int s)

E Parameter p is a null pointer. Parameter s is a

digit of value 0

Return a null value Passed

87. void* memcpy

(void* dest,

const void* src,

unsigned int s)

F Parameter dest is a pointer to a memory region

of size 16. Parameter src is a pointer to a string

value of “Hello World”. Parameter s is a digit of

value 12

Return dest pointer

containing “Hello

World”

Passed

81

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

88. void* memcpy

(void* dest,

const void* src,

unsigned int s)

F Parameter dest is a pointer to a memory region

of size 12. Parameter src is a pointer to a string

value of “Hello World”. Parameter s is a digit of

value 12

Return a pointer to

the memory region

containing “Hello

World”

Passed

89. void* memcpy

(void* dest,

const void* src,

unsigned int s)

E Parameter dest is a pointer to a memory region

of size 12. Parameter src is a null pointer.

Parameter s is a digit of value 12

Return null value Passed

82

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

90. void* memcpy

(void* dest,

const void* src,

unsigned int s)

E Parameter dest is a null pointer. Parameter src is

a pointer to a string value of “Hello World”.

Parameter s is a digit of value 12

Return null value Passed

91. void* memcpy

(void* dest,

const void* src,

unsigned int s)

E Parameter dest is a null pointer. Parameter src is

a null pointer. Parameter s is a digit of value 12

Return null value Passed

83

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

92. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

F Parameter ptr1 is a string value of “Hello”.

Parameter str2 is a string value of “Hello”.

Parameter s is of value 5

Return 0 Passed

93. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

F Parameter ptr1 is a string value of “Hello”.

Parameter ptr2 is a string value of “Hella”.

Parameter s is of value 5

Return 14 Passed

84

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

94. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

E Parameter ptr1 is a string value of “Hella”.

Parameter ptr2 is a string value of “Hello”.

Parameter s is of value 5

Return -14 Passed

95. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

E Parameter ptr1 is a string value of “Hello”.

Parameter ptr2 is a null pointer”. Parameter s is

of value 5

Return -1 Passed

85

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

96. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

E Parameter ptr1 is a null pointer. Parameter str2 is

a string value of “Hello”. Parameter str2 is a null

pointer. Parameter s is of value 5

Return -1 Passed

97. int memcmp

(const void* ptr1,

const void* ptr2,

unsigned int s)

E Parameter ptr1 is a null pointer. Parameter str2 is

a null pointer. Parameter s is of value 5

Return -1 Passed

86

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

98. void* memmove

(void* dest,

const void* src,

unsigned int s)

F Parameter dest is a pointer to a memory region

of size 12. Parameter src is a pointer to a string

value of “Hello World”. Parameter s is a digit of

value 12

Return a pointer to

the memory region

containing “Hello

World”

Passed

99. void* memmove

(void* dest,

const void* src,

unsigned int s)

E Parameter dest is a pointer to a memory region

of size 12. Parameter src is a null pointer.

Parameter s is a digit of value 12

Return null value Passed

87

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

100. void* memmove

(void* dest,

const void* src,

unsigned int s)

E Parameter dest is a null pointer. Parameter src is

a pointer to a string value of “Hello World”.

Parameter s is a digit of value 12

Return null value Passed

101. void* memset

(void* ptr,

int v, unsigned int s)

F Parameter ptr is a pointer to a memory region of

size 10. Parameter v is a character of value ‘a’.

Parameter s is a digit of value 10

Return ptr pointing

to the original

memory region

initialized to ‘a’

Passed

102. void* memset

(void* ptr,

int v, unsigned int s)

E Parameter ptr is null pointer. Parameter v is a

character of value ‘a’. Parameter s is a digit of

value 10

Return null value Passed

88

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

103. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“file.txt”. The file named “file.txt” exists in the

disk. Parameter m is a pointer to a string value

“r”

Return a FILE

pointer

Passed

104. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “r”

Return null value

(Cannot open a

non existing file

for reading)

Passed

105. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “r+”

Return null value

(Cannot open a

non existing file

for reading /

appending)

Passed

89

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

106. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “w”

Return a FILE

pointer

Passed

107. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “w+”

Return a FILE

pointer

Passed

108. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “a”

Return a FILE

pointer

Passed

90

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

109. FILE* fopen

(const char* fn,

const char* m)

F Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “a+”

Return a FILE

pointer

Passed

110. FILE* fopen

(const char* fn,

const char* m)

E Parameter fn is a null pointer. Parameter m is a

null pointer

Return a null value

(invalid

parameters)

Passed

111. FILE* fopen

(const char* fn,

const char* m)

E Parameter fn is a pointer to a string value

“nofile.txt”. The file named “nofile.txt” does not

exist in the disk. Parameter m is a pointer to a

string value “zzz”

Return a null value

(invalid file open

mode)

Passed

91

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

112. unsigned int fread

(void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

F Parameter ptr is a pointer to a memory region of

size 10. Parameter s is digit of a value 1.

Parameter c is a digit of value 10. Parameter f is

a FILE pointer previously returned by fopen

Return 10

(the size of bytes

read from the file)

Passed

113. unsigned int fread

(void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

E Parameter ptr is a null pointer. Parameter s is

digit of value 1. Parameter c is a digit of value

10. Parameter f is a FILE pointer previously

opened by fopen

Return 0

(invalid

parameters)

Passed

92

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

114. unsigned int fread

(void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

E Parameter ptr is a null pointer. Parameter s is

digit of a value 1. Parameter c is a digit of value

10. Parameter f is a null pointer

Return 0

(invalid

parameters)

Passed

115. unsigned int fwrite

(const void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

F Parameter ptr is a pointer to a memory region of

size 10 initialized to ‘a’. Parameter s is digit of a

value 1. Parameter c is a digit of value 10.

Parameter f is a FILE pointer previously opened

by fopen

Return 10

 (the number of

bytes written to

file)

Passed

93

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

116.

117. unsigned int fwrite

(const void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

E Parameter ptr is a null pointer. Parameter s is

digit of a value 1. Parameter c is a digit of value

10. Parameter f is a FILE pointer previously

opened by fopen

Return 0

(invalid

parameters)

Passed

94

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

118. unsigned int fwrite

(const void* ptr,

unsigned int s,

unsigned int c,

FILE* f)

E Parameter ptr is a null pointer. Parameter s is

digit of a value 1. Parameter c is a digit of value

10. Parameter f is a null pointer

Return 0

(invalid

parameters)

Passed

119. int fseek

(FILE* f,

long int off,

int origin)

F Parameter is a FILE pointer previously returned

by fopen. Parameter off is a digit of value 1.

Parameter origin is a digit of value SEEK_SET

Return 0

(success)

Passed

95

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

120. int fseek

(FILE* f,

long int off,

int origin)

F Parameter is a FILE pointer previously returned

by fopen. Parameter off is a digit of value 1.

Parameter origin is a digit of value SEEK_CUR

Return 0

(success)

Passed

121. int fseek

(FILE* f,

long int off,

int origin)

F Parameter is a FILE pointer previously returned

by fopen. Parameter off is a digit of value 1.

Parameter origin is a digit of value SEEK_END

Return 0

(success)

Passed

96

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

122. int fseek

(FILE* f,

long int off,

int origin)

E Parameter is a null pointer. Parameter off is a

digit of value 1. Parameter origin is a digit of

value SEEK_END

Return -1

(failure)

Passed

123. int fseek

(FILE* f,

long int off,

int origin)

E Parameter is a FILE pointer previously returned

by fopen. Parameter off is a digit of value 1.

Parameter origin is a digit of value 9999

Return -1

(failure)

Passed

124. int fclose(FILE* f) F Parameter f is a FILE pointer previously

returned by fopen

Return 0

(success)

Passed

97

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

125. int fclose(FILE* f) E Parameter f is a null pointer Return -1

(failure)

Passed

126. long int ftell(FILE* f) F Parameter f is a FILE pointer previously

returned by fopen

Return 0

(current file

pointer position)

Passed

127. long int ftell(FILE* f) E Parameter f is a null pointer Return -1

(invalid parameter)

Passed

128. int fputs

(const char* s,

FILE* f)

F Parameter s is a pointer to a string value “Hello

World”. Parameter f is a FILE pointer

previously returned by fopen

Return 11

(the number of

bytes written to the

file)

Passed

98

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

129. int fputs

(const char* s,

FILE* f)

E Parameter s is a null pointer. Parameter f is a

FILE pointer previously returned by fopen

Return -1

(invalid parameter)

Passed

130. int fputs

(const char* s,

FILE* f)

E Parameter s is a null pointer. Parameter f is a

null pointer

Return -1

(invalid

parameters)

Passed

131. int fputc

(int c,

FILE* f)

F Parameter c is a character of value ‘a’. Parameter

f is a FILE pointer previously returned by fopen

Return 97

(ASCII value of

letter ‘a’)

Passed

99

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

132. int fputc

(int c,

FILE* f)

E Parameter c is a character of value ‘a’. Parameter

f is a null pointer

Return -1

(invalid parameter)

Passed

133. int fgetc(FILE* f) F Parameter f is a FILE pointer previously

returned by fopen

Return a non -1

value

Passed

134. int fgetc(FILE* f) E Parameter f is a null pointer Return -1 Passed

135. int printf

(const char* format,

…)

F Parameter format is a string value “%s”. The last

parameter is a string value “Hello World”

Return 11 and

prints “Hello

World” to the

screen

Passed

100

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

136. int printf

(const char* format,

…)

F Parameter format is a string value “%d”. The last

parameter is a digit of value 1234

Return 4 and prints

“1234” to the

screen

Passed

137. int printf

(const char* format,

…)

F Parameter format is a string value “%c”. The last

parameter is a character of value ‘z’

Return 1 and prints

“z” to the screen

Passed

138. int sprintf

(char* b,

const char* format,

…)

F Parameter b is a pointer to a memory region of

size 20. Parameter format is a string value “%s”.

The last parameter is a string value “Hello

World”

Return 11 Passed

101

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

139. int sprintf

(char* b,

const char* format,

…)

F Parameter b is a pointer to a memory region of

size 20. Parameter format is a string value “%d”.

The last parameter is a digit of value 1234

Return 4 Passed

140. int sprintf

(char* b,

const char* format,

…)

F Parameter b is a pointer to a memory region of

size 20. Parameter format is a string value “%c”.

The last parameter is a character of value ‘z’

Return 1 Passed

102

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

141. int sprintf

(char* b,

const char* format,

…)

E Parameter b is a null pointer. Parameter format is

a string value “%c”. The last parameter is a

character of value ‘z’

Return -1 Passed

142. int scanf

(const char* format,

…)

F Parameter format is a string value “%s”. The last

parameter is a pointer to a memory region of size

1024

Return 3 if “abc”

is entered on the

screen

Passed

143. int scanf

(const char* format,

…)

F Parameter format is a string value “%d”. The last

parameter is a pointer to the address of an

integer

Return 2 if “12” is

entered on the

screen

Passed

103

Test

no.

T-TASI C Library

Interface

Type Description Expected Result Test

Result

144. int scanf

(const char* format,

…)

F Parameter format is a string value “%c”. The last

parameter is a pointer to the address of an

character

Return 1 if “c” is

entered on the

screen

Passed

104

D. T-TASI APPLICATION-LEVEL MEMORY MANAGEMENT TEST PLAN

The objective of the following test plan is to verify that the implemented T-TASI

Application-Level Memory Management interfaces conform to their specification. Table

12 provides a summary of the different tests that were conducted for the T-TASI

Application-Level Memory Management.

Table 12. T-TASI Application-Level Memory Management Test Cases

Test

no.

Interface Type Description Expected

Result

Test

Result

145. int get_memory

(unsigned int s,

void** ptr)

F Parameter s is of value

1024

Return 1

and the ptr

will point

to a

memory

region of

1024 bytes

Passed

146. int get_memory

(unsigned int s,

void** ptr)

E Parameter s is of value 0 Return 1 Passed

147. int get_memory

(unsigned int s,

void** ptr)

E Parameter s is of value

4294967296 (maximum

unsigned integer value)

Return 0

(Not

enough

memory

for

allocation)

Passed

105

Test

no.

Interface Type Description Expected

Result

Test

Result

148. int free_memory

(void* p)

F Parameter p is a pointer

to a memory of size 1024

bytes previously returned

by get_memory

Return 0.

Memory is

freed and

total

memory

increased

by 1029

bytes

Passed

149. int free_memory

(void* p)

E Parameter p is a null

pointer.

Return 1 Passed

E. T-TASI RAM DISK FILE SYSTEM TEST PLAN

The objectives of the following tests are to verify that the implemented T-TASI

RAM Disk File System interfaces conform to their requirements. Table 13 provides a

summary of the different tests that were conducted for the T-TASI RAM Disk File

System.

106

Table 13. T-TASI RAM Disk File System Test Cases

Test no. Interface Type Description Expected Result Test Result

150. int f_mount

(unsigned char b,

FATFS* fs)

F Parameter b is value 0. Parameter fs is

pointer to a FATFS structure

RAM drive is

mounted

Passed

151. int f_unlink

(const unsigned short* f)

F Parameter f is a pointer to a string value of

a file name of an existing file

The file is deleted Passed

152. int f_unlink

(const unsigned short* f)

F Parameter f is a pointer to a string value of

a file name of a non existing file

Nothing happens Passed

153. int f_unlink

(const unsigned short* f)

F Parameter f is a pointer to a string value of

a directory name with no files

The directory is

deleted

Passed

107

Test no. Interface Type Description Expected Result Test Result

154. int f_unlink

(const unsigned short* f)

E Parameter f is a pointer to a string value of

a directory name with existing files

The directory is

not deleted

Passed

155. int f_mkdir

(const unsigned short* f)

F Parameter f is a pointer to a string value

“newdir”

A new directory

will be created

Passed

156. int f_rename

(const unsigned short* f,

const unsigned short* n)

F Parameter f is a pointer to a string value of

a file name of an existing file. Parameter n

is a pointer to a string value of a new file

name

The original file

is renamed to the

new file name

Passed

157. int f_open

(FIL* fp,

const unsigned short* fn,

unsigned char b)

F Parameter fp is a pointer to a FIL variable.

Parameter fn is a pointer to string value of a

file name of an existing file. Parameter b is

a byte value of 1 (read mode)

Return 0

(success code)

Passed

108

Test no. Interface Type Description Expected Result Test Result

158. int f_open

(FIL* fp,

const unsigned short* fn,

unsigned char b)

F Parameter fp is a pointer to a FIL variable.

Parameter fn is a pointer to string value of a

file name of a non existing file. Parameter b

is a byte value of 1 (read mode)

Return 4

(code for file not

found)

Passed

159. int f_open

(FIL* fp,

const unsigned short* fn,

unsigned char b)

F Parameter fp is a pointer to a FIL variable.

Parameter fn is a pointer to a string value of

a file name of a non-existing file. Parameter

b is a byte value of 2 (write mode)

Return 4

(code for file not

found)

Passed

160. int f_open

(FIL* fp,

const unsigned short* fn,

unsigned char b)

F Parameter fp is a pointer to a FIL variable.

Parameter fn is a pointer to a string value of

a file name of a non-existing file. Parameter

b is a byte value of 6 (create new and write

mode)

Return 0

(success code)

Passed

109

Test no. Interface Type Description Expected Result Test Result

161. int f_close

(FIL* fp)

F Parameter fp is a pointer to a FIL variable

previously returned by f_open

Return 0

(success code)

Passed

162. int f_read

(FIL* fp,

void* b,

unsigned int n,

unsigned int* r)

F Parameter fp is a pointer to a FIL variable

previously returned by f_open. Parameter b

is a pointer to a memory of size 20.

Parameter n is a digit of value 20.

Parameter r is a pointer to an unsigned

integer variable.

Return 0

(success code)

Passed

110

Test no. Interface Type Description Expected Result Test Result

163. int f_write

(FIL* fp,

const void* b,

unsigned int n,

unsigned int* r)

F Parameter fp is a pointer to a FIL variable

previously returned by f_open. Parameter b

is a pointer to a memory of size 20.

Parameter n is a digit of value 20.

Parameter r is a pointer to an unsigned

integer variable.

Return 0

(success code)

Passed

164. int f_lseek

(FIL* fp,

unsigned long s)

F Parameter fp is a pointer to a FIL variable

previously returned by f_open. Parameter s

is a digit of value 1

Return 0

(success code)

Passed

111

F. ED APPLICATION TESTING

The objective of the following regression test is to verify that the modifications to

the ed application have not impacted the functionality of the application in undesirable

ways. This test is conducted in a Linux environment using the test suite distributed with

the GNU ed source code. To run the test suite directly in the T-TASI system would

require features that are currently not available in the T-TASI system, e.g., a shell and the

sed utility. Table 14 provides a summary of the different tests that were conducted for the

ed application.

Table 14. ed Application Test Case

Test

no.

Interface Type Description Expected

Result

Test

Result

165. ed Application F To verify the modified ed

application passes its

regression test.

No error

messages

Passed

G. INTEGRATION TESTING

The objectives of the following set of system-level tests are to verify that the

previous software components (T-TASI C Library, T-TASI Application-Level Memory

Management, ed Application and T-TASI RAM Disk File System) function correctly

when run together on the T-TASI system. The system test involves four partitions (see

Figure 7). Partition 1 (TPA partition) is configured with the trusted path application

(TPA). Partition 1, Partition 2 (normal partition), Partition 3 (normal partition) and

Partition 4 (EAP) each have a memory segment, specified in the configuration vector.

These memory segments host a RAM disk file system for each of the partitions. The

memory segment belonging to the partition is initialized by the file system to be the “0”

drive (in Figure 7, each memory segment has the same color as the partition recognizing

its RAM disk as the “0” drive). Inter-partition access flow is demonstrated by allowing

112

Partition 2 to have read and write access to the memory segment owned by Partition 3.

Partition 3 is also allowed read and write access to the memory segment owned by

Partition 2. Partitions recognize the RAM disks resident on those memory segments it

does not own using other drive letters. For example, Partition 4 is allowed read and write

access to the memory segment owned by Partition 2 (recognized as the “1” drive) and

Partition 3 (recognized as the “2” drive). The memory segment owned by Partition 4 is

accessible only to Partition 4, as it represents sensitive information that is only accessible

to the EAP.

Figure 7. Setup for Integration Test

Table 15 provides a summary of the different tests conducted as part of

integration testing.

113

Table 15. Integration Test Cases

Test

no.

Access Mode Type Description Expected Result Test

Result

166. Normal Access F User creates a new

file using ed

application in

partition 2 drive 0

A new file is

created

(Allowed internal

partition flow)

Passed

167.
Normal Access F User creates a new

file using ed

application in

partition 2 drive 1

A new file is

created

(Allowed external

partition flow)

Passed

168.
Emergency

Access

F User creates a new

file using ed

application in

partition 4 drive 0

A new file is

created

(Allowed internal

partition flow)

Passed

169.
Emergency

Access

F User read a file

using ed

application in

partition 4 drive 1

User is able to read

the file

(Allowed external

partition flow)

Passed

170.
Emergency

Access

E User modifies a

file using ed

application in

partition 4 drive 2

User is not able to

modify the file

(Disallowed

external partition

flow)

Passed

114

H. SUMMARY

This chapter described the test plans for the software components developed or

ported in this project, described in detail in Chapter IV. All tests conducted were

successful. The procedures for running the tests described in this chapter are provided in

Appendix C. The following chapter discusses the general results of this project and

suggests future work.

115

VI. RESULTS

In this thesis, we described our successful effort to port the ed text editor

application to the T-TASI system, supporting a demonstration in which access to

sensitive information is granted, under policy restrictions, during an emergency scenario.

The software libraries and framework implemented for T-TASI application development

will be useful to support future application development for the T-TASI project. In the

following sections, we discuss some problems encountered during the course of our

work, discuss related work, and conclude with suggestions for future work.

A. PROBLEMS ENCOUNTERED

1. Large Memory Array Initialization

When the LPSK was configured to provide a partition's application with a large

static array of more than one megabyte, the T-TASI system halted upon startup with a

memory error. The problem was traced to a bug in the LPSK. The kernel design utilized a

per-partition Local Descriptor Table (LDT), which holds the PL1, PL2, and PL3 segment

descriptors for the partition. During execution, only one LDT can be active (accessible) at

a time. As the kernel initialized each partition, the kernel was not properly switching the

LDT values for the new partition. Based on this discovery, the kernel bug was resolved

very quickly.

2. Interface Name Conflicts

The T-TASI C library implements functions defined in the C99 standard, whose

names conflict with existing utility functions provided by the T-TASI system's existing

Application I/O Library API. The differences between the interfaces provided by the

Application I/O Library and the identically named interfaces defined in the C99 standard

are described in Table 16. In absence of a resolution to these symbol conflicts, the linker

would fail during the application build process.

116

Table 16. Symbol Conflicts Between the T-TASI System Application I/O Library
Interfaces and Standard C Library Interfaces

no. Application I/O Library Interface C Library Interface (C99)

1. int __near strcpy(

char* dest,

const char* src,

int len);

char* strcpy(

char* dest,

const char* src);

2. int __near strncat(

char* dest,

const char* src,

int len);

char* strncat(

char* dest,

const char* src,

unsigned int len);

3. void __near memcpy(

unsigned char* dest,

unsigned char const* src,

int len);

void* memcpy(

void* dest,

const void* src,

unsigned int len);

4. int __near memcmp(

unsigned char const* addr_1,

unsigned char const* addr_2,

int len);

int memcmp(

const void* addr_1,

const void* addr_2,

unsigned int len);

The work-around for development was to comment out the conflicting interface

names in the Application I/O Library header file. This allows the linker to proceed and

does not affect the compilation of the rest of the system. We suggest developers avoid

117

choosing interface names that exist in standard library packages and suggest exported

interfaces in the T-TASI system be renamed with prefixes corresponding to module name

or PL number.

3. Identifier for Memory Segment Declaration

Memory segments were used for different purposes, such as memory management

and file systems, in this work. In the LPSK configuration vector, the path field of a

declared data segment can be used by a partition's application to directly reference the

data segment. However, there is no identifier field associated with a memory segment in

the LPSK configuration vector. Thus, in order to differentiate the usage of different

memory segments, we developed a convention in which the size of the memory segment

can be used to infer that segment's function. In particular, the size of a memory segment

used for memory management is hard-coded in the T-TASI Application-Level Memory

Management, and the size of a memory segment holding a RAM disk is hard-coded in the

T-TASI RAM Disk File System. This is not ideal and future work on the T-TASI system

could incorporate an identifier field representing the type for a memory segment.

4. User Credentials in Non TPA Partition

When the T-TASI system is booted, a user has to authenticate to the system using

a user name and password. This login mechanism is present only in the TPA partition and

not available in other partitions. There is no authentication mechanism in the new

partition when a user changes focus to a non-TPA partition. This would not be a problem

if the current user’s name (as input to the TPA partition) can be retrieved from the

Trusted OS Service, e.g., using the scos_who interface, by other partitions. An

application in a non-TPA partition sometimes requires the current user's name for

purposes such as application-level authorization. In particular, if the E-device is shared

with other users, another authorization mechanism may be required for the EAP to

restrict certain unauthorized users from accessing sensitive information.

118

B. RELATED WORK

The STOP operating system and XTS systems (e.g., XTS-200, XTS-300) are

descendents of the SCOMP security kernel. In particular, the STOP 6.3 operating system

is a commercially available, multilevel secure, high-assurance operating system that was

evaluated, as part of the XTS-400 system [32], to meet the Common Criteria assurance

level rating of EAL5+. The STOP 7 operating system, unlike previous STOP operating

systems, provides UNIX-like features (a shell, utilities, etc) and a standard C library (a

port of the open-source library uClibc) to develop or port UNIX applications to run on

their security kernel. This is similar to the larger objectives of the software components

developed during this project, which provide simple interfaces for porting and developing

applications on the T-TASI system. Recall, however, that the LPSK is intended to be an

evaluated, high-assurance separation kernel, satisfying the Separation Kernel Protection

Profile.

C. FUTURE WORK

In this section, we suggest future work related to improving the application

development framework and software components developed in this project, for the T-

TASI system.

1. T-TASI C Library

Some of the standard C interfaces have not been implemented by our effort

because of a lack of supporting functionalities provided by the current T-TASI system.

Table 17 shows the interfaces in a standard C library and the corresponding required

system functionalities.

119

Table 17. C Interfaces and the Corresponding Required System Functionalities

no. C Interface Required System Functionalities

1. Standard Signal Handling

interfaces (e.g., kill,

sigaction)

Provide standard signal such as SIGINT

(Interactive attention signal), SIGILL

(Illegal instruction), SIGABRT

(Abnormal termination), SIGTERM

(Termination request).

A signal can report some exceptional behavior

(divide by zero) within the program, or a signal

can be used by the system to report some

asynchronous event (user pressing a break key). A

signal handling API is currently provided in the T-

TASI system, but it does not define or utilize

standard POSIX signals.

2. Process spawning

interfaces (e.g., fork,

vfork, exec)

Provide a process a means to spawn a child

process. This feature requires the LPSK to support

more than one process per partition. It would be

necessary to create a process manager in the

Trusted or Untrusted Operating System Services.

3. Shell interaction interfaces

(e.g., system, popen,

pathconf)

Provide a process access to a shell (e.g., bash, csh).

These interfaces rely on a shell interpreter existing.

Again, before a shell interpreter can be ported to

the T-TASI system, the LPSK will need to support

multiple processes per partition , and operating

system services would be required to give the

illusion of process creation and termination.

120

2. T-TASI RAM Disk File System

The file storage implemented in this thesis is not persistent across a power cycle,

as the RAM disk is, of course, implemented in memory. The FatFs software library, used

in this work, does implement support for a variety of persistent storage. There are

existing open source projects using FatFs to utilize physical storage media such as Secure

Digital (SD) memory card storage, Multimedia Card (MMC) storage and USB flash

storage [25]. Low-level device communication codes for these media are available in

those projects, thus reducing future development time. Extending FatFs support to

include IDE or SATA disk support may benefit an effort to integrate non-bootable raw

secondary storage devices with the T-TASI system.

3. T-TASI Application-Level Memory Management

Lister and Eager [33] state the following five requirements for memory

management in an operating system:

1. Relocation: Memory management should be able to relocate programs in

memory, and handle both memory references and addresses in relocated program

code so that they always point to the correct memory location.

2. Protection: Each process should be protected against accidental or malicious

interference by other processes.

3. Sharing: Any protection mechanism should have the flexibility to allow several

processes to access the same region of memory and share information.

4. Logical Organization: Memory management should be able to logically

differentiate different parts of memory such as execute only, read only or read /

write only.

5. Physical Organization: Memory Management should handle moving information

between main and secondary memory.

The memory management provided in the T-TASI system satisfies all but the last

requirement (i.e., swapping memory into secondary memory). Although the allocation of

121

memory segments to each partition is static, a low-level secondary storage device driver

along with a low-level swap manager could provide the capability to swap these static

memory segments between secondary storage and RAM dynamically. Swapping is part

of the LPSK design [10]; however, it has not yet been implemented.

D. CONCLUSION

The application development framework presented here, consisting of the T-TASI

C Library, the T-TASI Application Memory Management and the T-TASI RAM Disk

File System, was designed and implemented to meet the requirements of supporting

extraordinary access of sensitive information during an emergency on the T-TASI

system. The open source text editor ed was ported using this framework, to demonstrate

the ability of the T-TASI system to utilize a non-trivial application in an emergency

partition.

122

THIS PAGE INTENTIONALLY LEFT BLANK

123

APPENDIX A. DESIGN OVERVIEW OF FATFS

This appendix provides a description of the FatFs module and the interfaces

exported by the T-TASI RAM Disk File System.

A. FATFS RETURN CODES

Table 18 provides the list of possible return codes returned by the T-TASI RAM

Disk File System functions that are exported from PL2 to PL3. These return codes are

from the FatFs project. The second column refers to the type of return code. The third

column refers to the actual value of the return code. The fourth column gives a

description of the meaning of the return code.

Table 18. FatFs Function Return Codes

no. Type Value Meaning

1. FR_OK 0 Success

2. FR_DISK_ERR 1 A hard error had occurred in the low

level disk I/O layer

3. FR_INT_ERR 2 Assertion failed

4. FR_NOT_READY 3 The physical drive cannot work

5. FR_NO_FILE 4 Could not find the file

6. FR_NO_PATH 5 Could not find the path

7. FR_INVALID_NAME 6 The path name format is invalid

124

no. Type Value Meaning

8. FR_DENIED 7 Access denied due to prohibited access

or directory full

9. FR_EXIST

8 Access denied due to prohibited access

10. FR_INVALID_OBJECT

9 The file/directory object is invalid

11. FR_WRITE_PROTECTED

10 The physical drive is write protected

12. FR_INVALID_DRIVE 11 The logical drive number is invalid

13. FR_NOT_ENABLED

12 The volume has no work area

14. FR_NO_FILESYSTEM 13 There is no valid FAT volume on the

physical drive

15. FR_MKFS_ABORTED

14 The f_mkfs() is aborted due to

parameter error

16. FR_TIMEOUT 15 Could not get a grant to access the

volume within defined period

17. FR_LOCKED 16 The operation is rejected according to

the file sharing policy

125

no. Type Value Meaning

18. FR_NOT_ENOUGH_CORE 17 Working buffer for the long file name

could not be allocated

19. FR_TOO_MANY_OPEN_FI

LES

18 Too many files opened

B. FATFS FILE MODES

Table 19 provides the list of possible modes for the f_open interface, exported by

the T-TASI RAM Disk File System to PL3. These numerical values of the file modes are

from the FatFs project.

Table 19. FatFs File Open Modes

no. Modes Meaning

1. 0 Opens the file. The function fails if the file does not exist

2. 1 Specifies read access to the object. Data can be read from the file

3. 2 Specifies write access to the object. Data can be written to the file

4. 4 Creates a new file. The function fails if the file already exists

5. 8 Creates a new file. If the file already exists, it is truncated and

overwritten

6. 16 Opens the file if the file exists. If not, the function creates the new file

C. FATFS FIL STRUCTURE

Table 20 provides details for the member variables of the internal file structure

FIL (see Table 6), defined by the FatFs project.

126

Table 20. FatFs FIL Structure

no. Item Used for

1. fs Pointer to the owner file system object.

2. id The id of the file system mounted.

3. flag Flags used when the file is opened.

4. pad1 Padding character

5. fptr Read and write file pointer.

6. fsize The size of the opened file

7. ori_clust The cluster where the file starts.

8. curr_clust The current cluster of the file where the fptr is referencing.

9. dsect The current data sector of the file.

10. dir_sect The sector containing the directory entry.

11. dir_ptr The pointer to the directory entry in the window.

D. FATFS INTERFACES

This section describes the PL2 functions exported by the T-TASI RAM Disk File

System to PL3. The interfaces are provided by the FatFs project. They were modified

with the appropriate call gate specification (CALLGATE_DECL_SCOS) needed to

export these interfaces to PL3. These interfaces are f_open, f_read, f_write, f_close,

f_unlink, f_mkdir, f_rename, f_lseek (see Table 4).

The following are details for each of these functions.

1. f_open

 This function creates a file object (FIL) to be used to access a file.

1.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_open(

127

FIL* fptr ,
const TCHAR* fn,
BYTE mode)

1.2 Inputs

• fptr
[OUT] Return the pointer to the file object structure to be created.
After the f_open function succeeded, the file can be accessed with the
file object structure until it is closed

• fn
[IN] Pointer to a null-terminated string that specify the file name to
create or open

• mode
[IN] Specify type of access and open method for the file. It is specified
by a combination of the flags listed in Table 19

1.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18. On
success, the fptr will be pointing to a valid FIL structure.

2. f_read

 This function reads data from an opened file.

2.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_open(

FIL* ftr ,
void* buffer,
UINT bytestoread,
UINT* bytesread)

2.2 Inputs
• fptr

[IN] The pointer to the opened file object

• buffer
[OUT] Pointer to a buffer to store the read data

• bytestoread
[IN] Specify the number of bytes to read from the file

• bytesread

128

[OUT] Pointer to an unsigned integer to return the actual number of
bytes read from the file

2.3 Function Result
Return FR_OK on success or any of the failure codes in Table 18.

3. f_write

 This function writes data to an opened file.

3.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_write(

FIL* fptr ,
const void* buffer,
UINT bytestowrite,
UINT* byteswritten)

3.2 Inputs
• fptr

[IN] The pointer to the opened file object

• buffer
[IN] Pointer to a buffer that stores the data to be written

• bytestowrite
[IN] Specify the number of bytes to write to the file

• byteswritten
[OUT] Pointer to an unsigned integer to return the actual number of
bytes written to the file

3.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18.

4. f_close

 This function closes an opened file.

4.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_close(

FIL* fptr)

4.2 Inputs
• fptr

[IN] The pointer to the opened file object

129

4.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18.

5. f_unlink

 This function removes a file or directory from the file system.

5.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_unlink(

const TCHAR* buffer)

5.2 Inputs
• buffer

[IN] Pointer to a null terminated string that specifies the file (or
directory) to be removed. A non-empty directory cannot be removed
with this function

5.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18.

6. f_mkdir

 This function creates a directory in the file system.

6.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_mkdir(

const TCHAR* buffer)

6.2 Inputs
• buffer

[IN] Pointer to a null terminated string that specifies the name of the
directory to be created

6.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18.

7. f_rename

 This function renames a file in the file system.

7.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_rename(

const TCHAR* oldname,
const TCHAR* newname)

130

7.2 Inputs

• oldname
[IN] Pointer to a null terminated string that specifies the name of the
file to be renamed

• newname
[IN] Pointer to a null terminated string that specifies the new name of
the file to be renamed

7.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18.

8. f_lseek

 This function moves the file read/write pointer of an opened file.

8.1 Prototype
__CALLGATE_DECL_SCOS FRESULT f_lseek(

const FIL* fptr,
DWORD offset)

8.2 Inputs
• fptr

[IN] The pointer to the opened file object

• offset
[IN] Number of bytes from the start of the file

8.3 Function Result

Return FR_OK on success or any of the failure codes in Table 18.

131

APPENDIX B. INSTALLATION GUIDE

This appendix describes the installation procedure for the T-TASI system and

those for the software artifacts of this project. Section A describes the system

requirements prior to installation and Section B describes the procedures for setting up

the virtual machines.

A. SYSTEM REQUIREMENTS

The following hardware and software are required before proceeding to the

installation. These were used during the implementation of this thesis.

The VM host machine: a desktop machine with the following, or comparable,

hardware and software configuration:

Intel Core2 Quad CPU, 3 GHz. 4 GB RAM

Windows XP Professional (Service Pack 3) Operating System

VMWare Workstation 7.1.0

CISR Archive ID Thesis-ed-2010, Disc 1 (of 4)

Contains the primary software components developed as part of this project: T-

TASI C Library, T-TASI RAM Disk File System, T-TASI Application-Level Memory

Management, modified ed source code.

Also, contains updated T-TASI project kernel code.

CISR Archive ID Thesis-ed-2010, Disc 2 (of 4) and Disc 3 (of 4)

Contains the T-TASI development platform VM.

CISR Archive ID Thesis-ed-2010, Disc 4 (of 4)

Contains the T-TASI System VM.

132

B. SYSTEM INSTALLATION

The following steps will set up the development platform virtual machine (VM)

and the T-TASI system VM.

Copy all files on Disc 2 and Disc 3 to a new and empty folder on the host

machine.

Import the T-TASI development platform VM into VMware by opening the file

“Red Hat Linux.vmx” in the folder from step 1.

Copy all files on Disc 4 to another new and empty folder on the host machine.

Import the T-TASI System VM into VMware by opening the file “Red Hat

Linux.vmx” in the folder from step 3.

Boot the T-TASI development platform VM using the option, “Power on this

virtual Machine”, in VMWare.

Login to the development platform VM using user name “student” and password

“Password1”.

On the development platform:

Copy the tarballs thesis_dev.tgz and thesis_test.tgz from Disc 1 to the local path ~

/Documents/tcx/trunk/

 Extract all files from the tarball:

cd ~/Documents/tcx/trunk/

tar –xzvf thesis_dev.tgz

Compile a new version of the T-TASI System kernel and applications:

cd ~/Documents/owc_17

. ./setvars.sh

cd ~/Documents/tcx/trunk/kernel

make clean all

133

Compile a new version of the configuration vector:

cd ~/Documents/tcx/trunk/vector/src

make clean all

./create_vector

Create a tarball of the T-TASI System binaries:

cd ~/Documents/tcx/trunk

./tarit

Boot the T-TASI System VM using the option, “Power on this virtual Machine”,

in VMWare.

When the Grub boot loader menu is presented, select the first option: “Fedora

(2.6.23.17-88.fc7)”.

Login to Fedora using the user name “root” (password is not required).

On the Fedora machine running on the T-TASI System VM:

Copy the file thesis_test.tgz from the development VM to the local root directory

(substitute the IP address of the development VM for the IP. The IP address can be

obtained using the command, /sbin/ifconfig):

scp

 student@IP:~/Documents/tcx/trunk/thesis_test.tgz

 /

Extract all files from the tarball:

cd /

tar –xzvf thesis_test.tgz

Edit the script /root/install.sh to reflect the IP address of the development

platform virtual machine.

Update the files on the T-TASI System using this script:

134

cd /root

./install.sh

When prompted by the install script, the password is “Password1”.

When the installation is completed, Fedora will reboot.

Upon reboot, at the Grub boot menu, select “LPSK with all Applications”.

The system will boot to the T-TASI system.

135

APPENDIX C. TESTING PROCEDURES

This appendix provides details on the procedures to perform the tests described in

Chapter V. The installation step in Appendix B should be followed before starting the test

procedures described next.

A. TEST PROCEDURES FOR TEST CASE 1–163

The following steps will perform the unit tests for test cases 1–163:

Boot the T-TASI System VM.

Log in to the T-TASI System using the user name “user1” and password

“Password1”.

Change partition focus to the (normal) Partition 2.

Start the test session, using the command:

test

The following message will appear on the screen:

Test Start

The test case 134 is successful if the following message appears on the screen:

Hello World

The test case 135 is successful if the following message appears on the screen:

1234

The test case 136 is successful if the following message appears on the screen:

z

For test case 141, the tester will be prompted to type a string, and the user should

do so when prompted.

136

For test case 142, the tester will be prompted to type a string, and the user should

do so when prompted. The test case will repeat until the correct string is typed.

For test case 143, the tester will be prompted to type a string, and the user should

do so when prompted. The test case will repeat until the correct string is typed.

The test is complete when the following message appears on the screen:

Test End

All tests have completed successfully if the following message appears on the

screen:

All tests completed successfully

If any test completes with a failure, the following message appears on the screen:

Some tests failed

Type the following command to clear the temporary files created during testing

(this step is necessary if repeated testing will be performed):

cleartest

B. TEST PROCEDURES FOR TEST CASE 164

The following procedures can be used to perform the test for test case 164. The

following steps test the original ed application in a Linux system using its pre-packaged

test suite:

Boot the development platform VM.

Log in to the development platform using user name “student” and password

“Password1”.

Compile and prepare the original ed application for testing:

cd ~/Documents/tcx/trunk/kernel/ed

tar –xzvf ed-1.4.tgz

cd ed-1.4

137

./configure

make

cd testsuite

cp ../ed .

Type the following commands to run the ed application’s test suite:

./check.sh

The following message appears on the screen if all tests complete successfully:

tests completed successfully

The following steps test the modified ed application in a Linux system using its

pre-packaged test suite:

Compile and prepare the modified ed application for testing:

cd ~/Documents/tcx/trunk/kernel/ed

./compile

cd ed-1.4/testsuite

rm ed

cp ../../ed .

Type the following commands to test the modified ed application:

./check.sh

The following message appears on the screen if all tests complete successfully:

tests completed successfully

138

C. TEST PROCEDURES FOR TEST CASE 165–169

The following procedure will perform the Integration test cases 165–169. First,

the following steps perform the test for test case 165.

Boot the T-TASI System VM.

Log in to the T-TASI System using user name “user1” and password

“Password1”.

Change partition focus to (normal) Partition 2.

Create a new file on disk 0 of Partition 2:

ed newfile1

i

Data in the text file

.

w

q

Verify the file newfile1 was created correctly:

ed newfile1

1p

q

The test is successful so far if the following message appears:

Data in the text file

Use the SAK to switch to the TPA partition, then switch focus to (normal)

Partition 3.

Verify that the file newfile1 was created on disk 1 of Partition 3:

ed 1:newfile1

139

1p

q

The test completed successfully if the following message appears:

Data in the text file

The following steps will perform tests for test case 166:

Use the SAK to switch to the TPA partition, then switch focus to (normal)

Partition 2.

Create a new file on disk 1 of Partition 1:

ed 1:newfile2

i

Data in the 2nd text file

.

w

q

Verify the file newfile2 was created correctly:

ed 1:newfile2

1p

q

The test is successful so far if the following message appears:

Data in the 2nd text file

Use the SAK to switch to the TPA partition, then switch focus to (normal)

Partition 3.

Verify that the file newfile2 was created on disk 0 of Partition 3:

140

ed 0:newfile2

1p

q

The test completed successfully if the following message appears:

Data in the 2nd text file

The following steps will perform tests for test case 167:

Use the SAK to switch to the TPA partition, then switch focus to (EAP) Partition

4.

Create a new file on disk 0 of Partition 4:

ed secret1

i

Secret data in file

.

w

q

Verify the file secret1 was created correctly:

ed 0:secret1

1p

q

The test completed successfully if the following message appears:

Secret data in file

The following steps will perform tests for test case 168:

141

Open and read the file newfile1 on disk 1 of Partition 4 (i.e., a file owned by

Partition 2):

ed 1:newfile1

1p

q

The test completed successfully if the following message appears:

Data in the text file

The following steps will perform tests for test case 169:

Open and modify the file newfile2 on disk 2 of Partition 4 (i.e., a file owned by

Partition 3):

ed 2:newfile2

1,2p

1p

a

New data added to this file

.

1,2p

w

Q

The test is successful so far if the following message appears:

Data in the 2nd text file

New data added to this file

Check that the file newfile2 was not actually modified:

ed 2:newfile2

142

1,2p

1p

q

The test is successful if the following message appears:

Data in the 2nd text file

143

APPENDIX D. DEMONSTRATION PROCEDURES

This appendix documents the procedures to demonstrate the capability of the T-

TASI system and the underlying LPSK to provide transient trust from a normal operating

mode to an emergency mode. Section A describes the preparation required in advance of

running the demonstration. Sections B–D describe the main scenarios of the

demonstration.

A. PREPARATION

The following steps will prepare the T-TASI system for the demonstration. All

commands issued are to be followed by a new line character.

1. Boot up the T-TASI System VM.

2. Log in to the T-TASI System using the username “user1” and password

“Password1”.

3. Toggle the emergency mode “on” in the TPA partition using the command:

T

4. Change partition focus to the (EAP) Partition 4, using the command:

3

5. Prepare the demonstration session for the EAP using the command:

demo

6. Use the SAK to switch to the TPA partition. Then change partition focus to

the (normal) Partition 2, using the command:

1

7. Prepare the demonstration session for the normal partitions using the

command:

demo

144

8. Use the SAK to switch to the TPA partition. Then, toggle the emergency

mode back to “off” using the command:

T

9. Return to the TPA main screen using the command:

c

The system is now ready for demonstration.

B. SCENARIO: ACCESSING NORMAL PARTITION IN NORMAL MODE

The following will demonstrate the capability of the T-TASI system to support a

normal mode of operation. The preparation steps in Section A needs to precede before

this section.

1. The T-TASI system is currently in the normal mode operation. Switch to the

focus menu, using the command:

 F

Notice, in normal mode operation there are three visible partitions: Partition 1

is used for the trusted path application, while Partitions 2 and 3 are normal

partitions. Partition 4 cannot be seen, because it is the EAP and we are in a

normal mode.

2. Switch to (normal) partition 2, using the following command:

1

3. In Partition 2, there is a file containing some (fictitious) non-sensitive patient

records. Display these records with ed using the commands:

ed rec_nor.txt

1,$ p

4. Users can modify or update the records in this file. Modify the phone number

of a patient using the following commands:

s/831-3737271/831-3737279/g

145

1,$ p

wq

C. SCENARIO: ACCESSING EAP IN EMERGENCY MODE

The following will simulate the capability of the T-TASI system to operate in an

emergency mode, demonstrating an application running in the EAP.

1. The T-TASI system receives a signal, triggering the activation of the

emergency. Currently, this functionality is not available and thus we simulate

this behavior manually. Use the SAK to switch to the TPA and toggle

emergency mode “on” using the command:

T

2. Notice, in emergency mode, the EAP is now visible. Switch focus to the EAP,

using the command:

3

3. The EAP contains sensitive patient records not available during normal mode

operation. For this demo, our (simulated) “sensitive data” includes details

about allergies and social security numbers for each patient. Type the

following commands to display the “sensitive data” for each patient:

ed rec_sec.txt

1,$ p

q

D. SCENARIO: ACCESSING NORMAL PARTITION IN EMERGENCY
MODE

The following will simulate the capability of the T-TASI system to operating in

an emergency mode, demonstrating an application running in the EAP. In particular, we

demonstrate that EAP applications are allowed read-only to access normal partition data.

1. In the EAP, display the normal patient records using the command:

146

ed 1:rec_nor.txt

1,$ p

2. Now, try to modify information in the normal partition by editing the phone

number:

s/831-3737279/831-3737271/g

1,$ p

wQ

3. Display the file again, using the commands:

ed 1:rec_nor.txt

1,$ p

q

Notice, the previous edits were not saved.

4. When the emergency situation is over, the T-TASI system will receive another

signal to deactivate the emergency mode. Again, this functionality is not yet

available, so it is simulated using the following procedure. Use the SAK to

switch to the TPA, and toggle emergency mode “off” using the command:

T

Notice, again, the EAP is not visible to users and cannot receive focus.

147

APPENDIX E. SOFTWARE ARTIFACTS

This appendix provides information on the software artifacts modified or created

during the course of this research work. Section A provides a list of files and source code

related to building the ed text editor. Section B provides a list of files used in the

implementation of the T-TASI C Library. Section C provides a list of files used in the

implementation of the T-TASI RAM Disk File System. Section D provides a list of the

original T-TASI system files that were modified during the course of this work.

A. ED APPLICATION

This section lists the files used for building the ed text editor (see Table 21). The

files listed in this section can be found in the sub-directory /ed in the main kernel

directory. Column 2 shows the file name and column 3 provides a brief description of the

purpose of the file.

Table 21. Files Used to Build the ed Text Editor on the T-TASI System

o.

File

Name

Purpose

ed_app.c Wrapper application to start ed application in the T-

TASI system

scos_mis

c_nyc.h

A copy of the original scos_misc.h file with

conflicting interface names removed.

ed/ed.h GNU ed header file

ed/ed_ma

in.c

Modified GNU ed main.c

ed/ed-

1.4.tgz

Original GNU ed application source code. This is

used for testing the modified ed source code

ed/compi Script for compiling the modified ed application in a

148

le Linux development platform

B. T-TASI C LIBRARY

This section lists the files used to build the T-TASI C Library (see Table 22). The

files listed in this section are found in the sub-directory /ed in the main kernel directory.

Column 2 shows the file name and column 3 provides a brief description of the purpose

of the file.

Table 22. Files Used to Build the T-TASI C Library

o.

File Name Purpose

clib.c Source code for implementing the C library. It also

contains the implementation of the T-TASI Application-

Level Memory Management component

stdio.h Header file used for the T-TASI C Library

regex/regc

omp.c

FreeBSD regular expression parsing code

regex/regf

ree.c

FreeBSD regular expression parsing code

regex/rege

xec.c

FreeBSD regular expression parsing code

regex/rege

rror.c

FreeBSD regular expression parsing code

C. T-TASI RAM DISK FILE SYSTEM

This section lists the files used to build the T-TASI RAM Disk File System

library (see Table 23). The files listed in this section are found in the sub directory /pl2fs

149

in the main kernel directory. Column 2 shows the file name and column 3 provides a

brief description of the purpose of the file.

Table 23. Files Used to Build the T-TASI RAM Disk File System

o.

File Name Purpose

diskio.h Header file used for disk_io.c

diskio.c Implements the low level disk I/O layer for the file

system. The interface with a memory segment to create a

RAM disk is found in this source code

ff.h Header file used for ff.c

ff.c Implements the FAT12/16/32 file system

ffconf.h Configuration file for the FatFs file system. Settings

such as sector size can be set in this file. The default settings

from FatFs project are used for this work

D. MODIFICATION OF ORIGINAL T-TASI SYSTEM SOURCE CODE

This section lists the files that were modified during this development work (see

Table 24) . All files listed below can be found in the main kernel directory. Column 2

shows the file name and column 3 provides a brief description of the modification to the

original file.

Table 24. T-TASI System Files that were Modified

o.

File Name Modification Purpose

150

o.

File Name Modification Purpose

tpa_app.c Included codes for simulating receipt of a

start/end emergency signal and hiding/displaying the

EAP partition

scos_gates.h Included T-TASI RAM Disk File System in

the PL2 call gates

scos.c Included a line to initialize the memory

segment for the T-TASI RAM Disk File System

Makefile Included lines for compiling the ed

application and compiling the T-TASI RAM Disk

File System into PL2

151

APPENDIX F. BASIC ED COMMANDS

This appendix provides summary instructions for basic commands to operate ed.

The details in this appendix are an abridged version of instructions found in the ed man

pages. For each row in Table 25, the second column provides the ed command, the third

column provides a brief description of the command and the final column provides a

description and example of how to use the command.

Table 25. Basic ed Commands

no. Command Purpose Usage

1. e Edit file e filename

Open and read the file specified by filename.

2. d Delete

lines

n d

Delete line number n in the file.

n1,n2 d

Delete the range of lines n1 to n2 in the file.

3. i Insert

lines

i

Start “ insert mode” in ed. When in this mode, text

will be inserted after the addressed line. Typing “.”

on a new line will end insert mode.

152

no. Command Purpose Usage

4. a Append

lines

a

Start “append mode” in ed. When in this mode, text

can be entered after the addressed line. Typing “.”

on a new line will end append mode.

5. p Print lines n p

Print the line number n of the file.

n1,n2 p

Print line number n1 to n2 of the file.

The range 1,$ with print, will print the entire file.

6. t Copy lines n1,n2 t n3

Copy lines from n1 to n2 to the line after n3.

7. m Move

lines

n1,n2 m n3

Move lines from n1 to n2 to the line after n3.

8. w Write file w filename

Write data in the buffer to the file named filename.

If there is no file name specified, the current file

will be overwritten.

153

no. Command Purpose Usage

9. u Undo last

command

u

Undo the last command that modified the file.

10. q Quit ed q

Causes ed to exit. If there are changes in the file,

the user will be notified.

11. Q Quit ed Q

Causes ed to exit without checking whether there

are changes in the file.

154

THIS PAGE INTENTIONALLY LEFT BLANK

 155

LIST OF REFERENCES

[1] J. P. Anderson, “Computer Security Technology Planning Study,” Air Force Elec.
Syst. Div. Rep. ESD-TR-73-51, October 1972.

[2] J. H. Saltzer and M.D. Schroeder, “The protection of information in computer
systems,” in Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, September
1975.

[3] W. R. Shockley and R. R. Schell, “TCB subsets for incremental evaluation,” in
Proceedings of the 3rd AIAA Conference on Computer Security, pp. 131–139,
1987.

[4] S.R. Jr. Ames, M. Gasser and R.R. Schell, “Security kernel design and
implementation: an introduction,” Computer, vol. 16, no. 7, pp. 14–22, July 1983.

[5] L. J. Fraim, “SCOMP: a solution to the multilevel security problem,” in Advances
in Computer System Security, vol. 2, Ed. R. Turn, pp. 185–93, 1983.

[6] R. R. Shell, T. F. Tao and M. Heckman, “Designing the GEMSOS security kernel
for security and performance,” in Proceedings of the 8th National Computer
Security Conference, pp. 108–19, 1985.

[7] J. Rushby, “The design and verification of secure systems,” 8th ACM Symposium
on Operating System Principles (SOSP), Pacific Groove, CA, Appears in ACM
Operating Systems Review, vol. 15, no. 5, pp. 12–21, December 1981.

[8] T.D. Nguyen, T.E Levin and C.E. Irvine, “High Robustness Requirements in a
Common Criteria Protection Profile,” in Proceedings of the 4th IEEE
International Information Assurance Workshop, April 2006.

[9] T. E. Levin, C. E. Irvine and T. D. Nguyen, “Least privilege in separation
kernels,” in Proceeding of the International Conference on Security and
Cryptography, pp. 355–362, August 2006.

[10] P.C. Clark, D. J. Shifflett, C. E. Irvine, T. D. Nguyen and T. E. Levin, “Trusted
Computing Exemplar (TCX) Least Privilege Separation Kernel (LPSK) Product
Functional Specification Volume I High Level Description,” 6 May 2010.

[11] National Security Agency. “U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness,” Version 1.03, 29 June
2007.

 156

[12] T. D. Nguyen, T. E. Levin and C. E. Irvine, “TCX project: high assurance for
secure embedded systems,” in Proceedings of the 11th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 21–25, March 2005.

[13] Common Criteria for Information Technology Security Evaluation, Part 3:
Security Assurance Requirements, Version 2.1, August 1999.

[14] T.E Levin, C.E. Irvine, T.V. Benzel, T.D. Nguyen, P.C. Clark and G. Bhaskara, “
Trusted Emergency Management,” NPS Technical Report NPS-CS-09-001, Naval
Postgraduate School, Monterey, CA, March 2009.

[15] C.E Irvine, T.E Levin, P.C Clark and T.D. Nguyen, “A security architecture for
transient trust,” in Proceedings of 2nd ACM Workshop on Computer Security
Architectures (CSAW ‘08), FairFax, VA, pp. 1–8, October 2008.

[16] Department of Defense Trusted Computer System Evaluation Criteria. no. DoD
5200.28–STD, National Computer Security Center, December 1985.

[17] J. Guillen, “Least Privilege Separation Kernel Storage Hierarchy Prototype for the
Trusted Computing Exemplar Project,” M.S. Thesis, Naval Postgraduate School,
Monterey, CA, June 2010.

[18] The GNU Project, “GNU Emacs,” http://www.gnu.org/software/emacs/. Last
Accessed: December 6, 2010.

[19] Vim, “Vim Online,” http://www.vim.org/. Last Accessed: December 6, 2010.

[20] The GNU Project , “Ed – A line-oriented text editor,”
http://www.gnu.org/software/ed/. Last Accessed: December 6, 2010.

[21] T. E. Levin, C. E. Irvine, T. V. Benzel, G. Bhaskara, P. C. Clark and T. D.
Nguyen, “Design Principles and Guidelines for Security,” Technical Report NPS-
CS-07-014, Naval Postgraduate School, Monterey, CA, November 2007.

[22] C. Bays, “A comparison of next-fit, first-fit and best-fit,” Communications of the
ACM, vol. 20, no. 3, pp. 191–192, 1977.

[23] A. Tanenbaum, Operating Systems Design and Implementation (Prentice Hall,
2006), p. 382.

[24] ISO/IEC 9899:TC3 Draft Standard – Programming Languages – C,
http://www.open-std.org/JHTC1/SC22/WG14/www/docs/n1256.pdf. Last
Accessed: December 7, 2010.

[25] FatFs Project, “FatFs Generic File System Module,” http://elm-
chan.org/fsw/ff/00index_e.html. Last Accessed: July 2010.

 157

[26] FatFs Project, “About FatFs License,” http://elm-
chan.org/fsw/ff/en/appnote.html#license. Last Accessed: July 2010.

[27] GNU, “GNU C Library,” http://www.gnu.org/software/libc/. Last Accessed: July
2010.

[28] F. V. Leitner, “diet libc - A libc Optimized for Small Size,”
http://www.fefe.de/dietlibc/. Last Accessed: July 2010.

[29] E. Andersen, “uClibc,” http://www.uclibc.org/. Last Accessed: July 2010.

[30] FreeBSD, “The FreeBSD Project,” http://www.freebsd.org/. Last Accessed: July
2010.

[31] Open Source Initiative OSI, “The BSD License,”
http://www.opensource.org/licenses/bsd-license.php. Last Accessed: July 2010.

[32] “NIAP Common Criteria Evaluation and Validation Scheme Validated Product:
XTS-400/STOP 6.4 U4,” Validation Report CCEVS-VR-VID10293-2008,
http://www.niap-ccevs.org/cc-scheme/st/vid10293. Last Accessed: December 7,
2010.

[33] A. Lister and R. Eager, Fundamentals of Operating Systems (New York:
Springer-Verlag), 1993.

 158

THIS PAGE INTENTIONALLY LEFT BLANK

 159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

3. Kris Britton
 National Security Agency
 Fort Meade, MD

4. John Campbell
 National Security Agency
 Fort Meade, MD

5. Deborah Cooper
 DC Associates, LLC
 Reston, VA

6. Grace Crowder
 NSA
 Fort Meade, MD

7. Louise Davidson
 National Geospatial Agency
 Bethesda, MD

8. Vincent J. DiMaria
 National Security Agency
 Fort Meade, MD

9. Rob Dobry
 NSA
 Fort Meade, MD

10. Jennifer Guild
 SPAWAR
 Charleston, SC

11. CDR Scott Heller
 SPAWAR
 Charleston, SC

 160

12. Dr. Steven King
 ODUSD
 Washington, DC

13. Steve LaFountain
 NSA
 Fort Meade, MD

14. Dr. Greg Larson
 IDA
 Alexandria, VA

15. Dr. Carl Landwehr
 National Science Foundation
 Arlington, VA

16. Dr. John Monastra
 Aerospace Corporation
 Chantilly, VA

17. John Mildner
 SPAWAR
 Charleston, SC

18. Dr. Victor Piotrowski
 National Science Foundation
 Arlington, VA

19. Jim Roberts
 Central Intelligence Agency
 Reston, VA

20. Ed Schneider
 IDA
 Alexandria, VA

21. Mark Schneider
 NSA
 Fort Meade, MD

22. Keith Schwalm
 Good Harbor Consulting, LLC
 Washington, DC

 161

23. Ken Shotting
 NSA
 Fort Meade, MD

24. Dr. Ralph Wachter
 ONR
 Arlington, VA

25. Dr. Cynthia E. Irvine
 Naval Postgraduate School
 Monterey, CA

26. Dr. Mark Gondree
 Naval Postgraduate School
 Monterey, CA

27. Professor Yeo Tat Soon
 Temasek Defence Systems Institute
 National University of Singapore
 Singapore

28. Tan Lai Poh
 Temasek Defence Systems Institute
 National University of Singapore

Singapore

29. Ng Yeow Cheng
 Defence Science & Technology Agency
 Singapore

